
...looooong title...
as encountered in

Normalization by Evaluation

Olivier Danvy

(danvy@brics.dk)

IFIP WG 2.11 August

1



Plan

1. Reminder on type-directed partial evaluation

and normalization by evaluation.

2. Overview of correspondences

between operational semantics for ev

3. Application to strong normalization.

2



Type-directed partial evaluation

• Origin: binding-time coercions in offline

• Click: Thomas Streicher’s talk at DAIMI

on ‘reduction-free normalization.

• Type-directed reification and reflection

with let insertion.

3



Normalization by evaluation

• An APPSEM workshop in 1998:

the convergence of many interests.

• Further work: denotational, operational,

• One-pass CPS transformation:

– Danvy & Filinski, LFP’90.

– Millikin, TFP’05.

4



Plan

√
Reminder on type-directed partial evaluation

and normalization by evaluation.

2. Overview of correspondences

between operational semantics for ev

3. Application to strong normalization.

5



Correspondence #1: big-step semantics

function implementing
a natural semantics

CPS transformation
defunctionalization

��

function implementing
a big-step abstract machine

6



Correspondence #1: big-step semantics

function implementing
a natural semantics

CPS transformation
defunctionalization

��

function implementing
a big-step abstract machine

Reynolds

7



Correspondence #2: small-step semantics

function implementing
a structured operational semantics

CPS transformation
defunctionalization

��

function implementing
a reduction semantics

8



Correspondence #3:

function implementing
a reduction semantics

refocusing

��

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS RS-04-26

9



On the need for refocusing

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction conte

2. contract the redex if it is an actual one

3. plug.

10



On the need for refocusing

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction conte

2. contract the redex if it is an actual one

3. plug.

Evaluation: lather, rinse

11



Refocusing

1. decompose

• a value term into itself, and

• a non-value term into
a potential redex and a reduction conte

2. contract the redex if it is an actual one

3.

12



Refocusing

1. decompose

• a value term into itself, and

• a non-value term into
a potential redex and a reduction conte

2. contract the redex if it is an actual one

3. continue the decomposition with the
contractum and the current context.

13



Correspondence #3:

function implementing
a reduction semantics

refocusing

��

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS RS-04-26

14



Correspondence #4: abstract machines

function implementing
a small-step abstract machine

lightweight fusion

��

function implementing
a big-step abstract machine

Ohori and Sasano,

Danvy and Millikin, BRICS RS-07-08

15



Recent progress (2007)

Formalization in Coq (Biernacka & Bier

16



Results (1/3): the pure case

• reduction order ↔ evaluation order

• explicit substitutions ↔ environment

• pure notions of computation: SECD, Kr

CEK, ZINC, CLS, CAM, TIM, etc.

17



Results (2/3): notions of computation

Known and new variants of, e.g., the CEK

• state

• control (exceptions, continuations, delimited

continuations)

• stack inspection

• combinations of effects

18



Results (3/3): language paradigms

• logic

• object-oriented

• stochastic π-calculus

• imperative

• example: LILY

19



LILY (Rasmus Lerchedahl Petersen)

• The polymorphic linear lambda calculus
recursion LILY, by Gavin Bierman, Andre
Pitts, and Claudio Russo.

• From natural semantics to “a framestac
semantics that usually took a lengthy
to show correct.”

• A calculus and a reduction strategy that
correspond to this abstract machine.

20



Plan

√
Reminder on type-directed partial evaluation

and normalization by evaluation.

√
Overview of correspondences

between operational semantics for ev

3. Application to strong normalization.

21



Natural question:

what about strong normalization

and normalization by evaluation?

22



Natural question:

what about strong normalization

and normalization by evaluation?

Answer: it works too.

Joint work with Kevin Millikin & Johan

23



reduction semantics
(calculus + reduction strategy)

��

abstract machine

big-step semantics
(normalization function)

OO

24



Our main result

Curien’s normalizer in “Categorical Combinators

Sequential Algorithms and Functional Prog

Curien’s
normalizer

��

reduction
semantics

//

Krivine
style

abstract
machine

compositional
noroo

25



Abstract machines that fit

• McGowan’s modified SECD machine

(STOC’70)

• Crégut’s KN machine (LFP’90)

• Lescanne’s U-machine (POPL’94)

• Grégoire and Leroy’s modified ZAM (ICFP’02)

• Kluge’s λσ-machine (’05)

26



Make your own normalizer (1/2)

Given a calculus and a strategy:

1. refocus the one-step normalizer into a

small-step abstract machine,

2. fuse the small-step abstract machine

big-step abstract machine,

27



Make your own normalizer (2/2)

3. refunctionalize the big-step abstract machine

into a normalization function, and

4. optionally, transform the normalization

function into direct style.

More often than not(?), the normalization

function will be compositional.

28



Conclusion

What:

• The same elephant.

How:

• CPS.

• Defunctionalization.

29



Current work

• type soundness

• automated support for refactoring

• report the examples

• stress-test the whole thing

30



Thank you.

31


