...looooong title...
as encountered In
Normalization by Evalua

Olivier Danvy
(danvy@Dbrics.dk)

IFIP WG 2.11 August



Plan

1. Reminder on type-directed partial ev

and normalization by evaluation.

2. Overview of correspondences

between operational semantics for e\

3. Application to strong normalization.



Type-directed partial evalua

e Origin: binding-time coercions in offli

® Click: Thomas Streicher’s talk at DAI

on ‘reduction-free normalizatio

e Type-directed reification and reflectio

with let insertion.



Normalization by evaluatic

e An APPSEM workshop in 1998:

the convergence of many interests.
e Further work: denotational, operatior

® One-pass CPS transformation:

— Danvy & Filinski, LFP’90.
— Millikin, TFP’05.



Plan

/ Reminder on type-directed partial ev:

and normalization by evaluation.

2. Overview of correspondences

between operational semantics for e\

3. Application to strong normalization.



Correspondence #1:. big-step se

function implementing
a hatural semantics

CPS transforme
defunctionaliza

function implementing
a big-step abstract machine



Correspondence #1:. big-step se

function implementing
a hatural semantics

CPS transforme
defunctionaliza

function implementing
a big-step abstract machine

Reync



Correspondence #2: small-step

function implementing
a structured operational semanti

CPS transformr
defunctionaliz

function implementing
a reduction semantics



Correspondence #3:

function implementing
a reduction semantics

refocusing

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS

9



On the need for refocusini

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction cor

2. contract the redex If it Is an actual on

3. plug.

10



On the need for refocusini

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction cor
2. contract the redex if it Is an actual on
3. plug.

Evaluation: lather, rins

11



Refocusing

1. decompose

® a value term into itself, and

® a non-value term into
a potential redex and a reduction c

2. contract the redex If it Is an actual on

3.

12



Refocusing

1. decompose

® a value term into itself, and

® a non-value term into
a potential redex and a reduction c

2. contract the redex If it Is an actual on

3. continue the decomposition with the
contractum and the current context.

13



Correspondence #3:

function implementing
a reduction semantics

refocusing

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS

14



Correspondence #4. abstract m

function implementing
a small-step abstract machine

lightweight fus

function implementing
a big-step abstract machine

Ohori and Sasano,
Danvy and Millikin, BRICS

15



Recent progress (2007)

Formalization in Coqg (Biernacka & Bie

16



Results (1/3): the pure cas

® reduction order & evaluation order
e explicit substitutions <— environment

® pure notions of computation: SECD,

CEK, ZINC, CLS, CAM, TIM, etc.

17



Results (2/3): notions of compl

Known and new variants of, e.g., the Cl
® state

e control (exceptions, continuations, de

continuations)
e stack inspection

e combinations of effects

18



Results (3/3): language parac

® |ogic

® object-oriented

e stochastic 7t-calculus
® imperative

e example: LILY

19



LILY (Rasmus Lerchedahl Pete

e The polymorphic linear lambda calcu
recursion LILY, by Gavin Bierman, Ar
Pitts, and Claudio Russo.

e From natural semantics to “a framest
semantics that usually took a lengthy
to show correct.”

e A calculus and a reduction strategy t|
correspond to this abstract machine.

20



Plan

/ Reminder on type-directed partial ev:

and normalization by evaluation.

\/ Overview of correspondences

between operational semantics for e\

3. Application to strong normalization.

21



Natural question:

what about strong normaliza
and normalization by evaluat

22



Natural question:

what about strong normaliza
and normalization by evaluat

Answer: It works too.

Joint work with Kevin Millikin & Johar

23



reduction semantics
(calculus + reduction strategy

abstract machine

big-step semantics
(normalization function)

24



Our main result

Curien’s normalizer in “Categorical Con

Sequential Algorithms and Functional F

curien’s
normalizer
Krivine c
reduction style r
semantics abstract

machine

25



Abstract machines that fr

e McGowan’'s modified SECD machine
(STOC'70)

e Cregut’s KN machine (LFP’90)

e |Lescanne’s U-machine (POPL94)

e Gregoire and Leroy’s modified ZAM (
e Kluge’'s Ao-machine ('05)

26



Make your own normalizer (

Given a calculus and a strategy:

1. refocus the one-step normalizer into

small-step abstract machine,

2. fuse the small-step abstract machine

big-step abstract machine,

27



Make your own normalizer (:
3. refunctionalize the big-step abstract
Into a normalization function, and

4. optionally, transform the normalizatio

function into direct style.

More often than not(?), the normalizatic

function will be compositional.

28



Conclusion

What:

® The same elephant.

How:
e CPS.

e Defunctionalization.

29



Current work

® type soundness
e automated support for refactoring
e report the examples

® stress-test the whole thing

30



Thank you.

31



