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Plan

1. Reminder on type-directed partial ev

and normalization by evaluation.

2. Overview of correspondences

between operational semantics for e\

3. Application to strong normalization.



Type-directed partial evalua

e Origin: binding-time coercions in offli

® Click: Thomas Streicher’s talk at DAI

on ‘reduction-free normalizatio

e Type-directed reification and reflectio

with let insertion.



Normalization by evaluatic

e An APPSEM workshop in 1998:

the convergence of many interests.
e Further work: denotational, operatior

® One-pass CPS transformation:

— Danvy & Filinski, LFP’90.
— Millikin, TFP’05.
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Correspondence #1:. big-step se

function implementing
a hatural semantics

CPS transforme
defunctionaliza

function implementing
a big-step abstract machine



Correspondence #1:. big-step se

function implementing
a hatural semantics

CPS transforme
defunctionaliza

function implementing
a big-step abstract machine

Reync



Correspondence #2: small-step

function implementing
a structured operational semanti

CPS transformr
defunctionaliz

function implementing
a reduction semantics



Correspondence #3:

function implementing
a reduction semantics

refocusing

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS
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On the need for refocusini

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction cor

2. contract the redex If it Is an actual on

3. plug.
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On the need for refocusini

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction cor
2. contract the redex if it Is an actual on
3. plug.

Evaluation: lather, rins
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Refocusing

1. decompose

® a value term into itself, and

® a non-value term into
a potential redex and a reduction c

2. contract the redex If it Is an actual on

3.
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Refocusing

1. decompose

® a value term into itself, and

® a non-value term into
a potential redex and a reduction c

2. contract the redex If it Is an actual on

3. continue the decomposition with the
contractum and the current context.
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Correspondence #3:

function implementing
a reduction semantics

refocusing

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS
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Correspondence #4. abstract m

function implementing
a small-step abstract machine

lightweight fus

function implementing
a big-step abstract machine

Ohori and Sasano,
Danvy and Millikin, BRICS
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Recent progress (2007)

Formalization in Coqg (Biernacka & Bie

16



Results (1/3): the pure cas

® reduction order & evaluation order
e explicit substitutions <— environment

® pure notions of computation: SECD,

CEK, ZINC, CLS, CAM, TIM, etc.
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Results (2/3): notions of compl

Known and new variants of, e.g., the Cl
® state

e control (exceptions, continuations, de

continuations)
e stack inspection

e combinations of effects
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Results (3/3): language parac

® |ogic

® object-oriented

e stochastic 7t-calculus
® imperative

e example: LILY
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LILY (Rasmus Lerchedahl Pete

e The polymorphic linear lambda calcu
recursion LILY, by Gavin Bierman, Ar
Pitts, and Claudio Russo.

e From natural semantics to “a framest
semantics that usually took a lengthy
to show correct.”

e A calculus and a reduction strategy t|
correspond to this abstract machine.
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Natural question:

what about strong normaliza
and normalization by evaluat
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Natural question:

what about strong normaliza
and normalization by evaluat

Answer: It works too.

Joint work with Kevin Millikin & Johar
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reduction semantics
(calculus + reduction strategy

abstract machine

big-step semantics
(normalization function)
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Our main result

Curien’s normalizer in “Categorical Con

Sequential Algorithms and Functional F

curien’s
normalizer
Krivine c
reduction style r
semantics abstract

machine
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Abstract machines that fr

e McGowan’'s modified SECD machine
(STOC'70)

e Cregut’s KN machine (LFP’90)

e |Lescanne’s U-machine (POPL94)

e Gregoire and Leroy’s modified ZAM (
e Kluge’'s Ao-machine ('05)
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Make your own normalizer (

Given a calculus and a strategy:

1. refocus the one-step normalizer into

small-step abstract machine,

2. fuse the small-step abstract machine

big-step abstract machine,
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Make your own normalizer (:
3. refunctionalize the big-step abstract
Into a normalization function, and

4. optionally, transform the normalizatio

function into direct style.

More often than not(?), the normalizatic

function will be compositional.
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Conclusion

What:

® The same elephant.

How:
e CPS.

e Defunctionalization.
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Current work

® type soundness
e automated support for refactoring
e report the examples

® stress-test the whole thing
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Thank you.
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