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Plan

1. Reminder on type-directed partial evaluation

and normalization by evaluation.

2. Overview of correspondences

between operational semantics for ev

3. Application to strong normalization.
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Type-directed partial evaluation

• Origin: binding-time coercions in offline

• Click: Thomas Streicher’s talk at DAIMI

on ‘reduction-free normalization.

• Type-directed reification and reflection

with let insertion.
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Normalization by evaluation

• An APPSEM workshop in 1998:

the convergence of many interests.

• Further work: denotational, operational,

• One-pass CPS transformation:

– Danvy & Filinski, LFP’90.

– Millikin, TFP’05.
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Correspondence #1: big-step semantics

function implementing
a natural semantics

CPS transformation
defunctionalization

��

function implementing
a big-step abstract machine
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Correspondence #1: big-step semantics

function implementing
a natural semantics

CPS transformation
defunctionalization

��

function implementing
a big-step abstract machine

Reynolds
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Correspondence #2: small-step semantics

function implementing
a structured operational semantics

CPS transformation
defunctionalization

��

function implementing
a reduction semantics
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Correspondence #3:

function implementing
a reduction semantics

refocusing

��

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS RS-04-26
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On the need for refocusing

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction conte

2. contract the redex if it is an actual one

3. plug.
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On the need for refocusing

One-step reduction function:

1. decompose a non-value term into

a potential redex and a reduction conte

2. contract the redex if it is an actual one

3. plug.

Evaluation: lather, rinse
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Refocusing

1. decompose

• a value term into itself, and

• a non-value term into
a potential redex and a reduction conte

2. contract the redex if it is an actual one

3.
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Refocusing

1. decompose

• a value term into itself, and

• a non-value term into
a potential redex and a reduction conte

2. contract the redex if it is an actual one

3. continue the decomposition with the
contractum and the current context.
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Correspondence #3:

function implementing
a reduction semantics

refocusing

��

function implementing
a small-step abstract machine

Danvy and Nielsen, BRICS RS-04-26
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Correspondence #4: abstract machines

function implementing
a small-step abstract machine

lightweight fusion

��

function implementing
a big-step abstract machine

Ohori and Sasano,

Danvy and Millikin, BRICS RS-07-08
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Recent progress (2007)

Formalization in Coq (Biernacka & Bier
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Results (1/3): the pure case

• reduction order ↔ evaluation order

• explicit substitutions ↔ environment

• pure notions of computation: SECD, Kr

CEK, ZINC, CLS, CAM, TIM, etc.
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Results (2/3): notions of computation

Known and new variants of, e.g., the CEK

• state

• control (exceptions, continuations, delimited

continuations)

• stack inspection

• combinations of effects

18



Results (3/3): language paradigms

• logic

• object-oriented

• stochastic π-calculus

• imperative

• example: LILY
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LILY (Rasmus Lerchedahl Petersen)

• The polymorphic linear lambda calculus
recursion LILY, by Gavin Bierman, Andre
Pitts, and Claudio Russo.

• From natural semantics to “a framestac
semantics that usually took a lengthy
to show correct.”

• A calculus and a reduction strategy that
correspond to this abstract machine.
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Natural question:

what about strong normalization

and normalization by evaluation?
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Natural question:

what about strong normalization

and normalization by evaluation?

Answer: it works too.

Joint work with Kevin Millikin & Johan
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reduction semantics
(calculus + reduction strategy)

��

abstract machine

big-step semantics
(normalization function)

OO
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Our main result

Curien’s normalizer in “Categorical Combinators

Sequential Algorithms and Functional Prog

Curien’s
normalizer

��

reduction
semantics

//

Krivine
style

abstract
machine

compositional
noroo
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Abstract machines that fit

• McGowan’s modified SECD machine

(STOC’70)

• Crégut’s KN machine (LFP’90)

• Lescanne’s U-machine (POPL’94)

• Grégoire and Leroy’s modified ZAM (ICFP’02)

• Kluge’s λσ-machine (’05)
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Make your own normalizer (1/2)

Given a calculus and a strategy:

1. refocus the one-step normalizer into a

small-step abstract machine,

2. fuse the small-step abstract machine

big-step abstract machine,

27



Make your own normalizer (2/2)

3. refunctionalize the big-step abstract machine

into a normalization function, and

4. optionally, transform the normalization

function into direct style.

More often than not(?), the normalization

function will be compositional.
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Conclusion

What:

• The same elephant.

How:

• CPS.

• Defunctionalization.
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Current work

• type soundness

• automated support for refactoring

• report the examples

• stress-test the whole thing
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Thank you.
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