
Component-based
bisimilarity

Peter D Mosses, Swansea University

IFIP WG 2.11 Meeting, 25-27 June 2012, Halmstad, Sweden

1

reusable

PLANCOMPS

C# Java …

…

 fundamental constructs
‘funcons’

translation

Programming
Languages

Components
 and their
Specifications

(incl. DSLs)

2

Funcon specifications
Structural Operational Semantics?
Reduction Semantics?

‣ non-modular ☹

Modular SOS?

‣ modular ☺, but requires explicit labels ☹

Implicitly-Modular SOS?

‣ modular ☺, and labels are left implicit ☺

3

Example funcon
cond (Expr, Expr, Expr) : Expr

‣ Dynamic semantics:

E1 → E1′
cond(E1, E2, E3) → cond(E1′, E2, E3)

cond(true, E2, E3) → E2

cond(false, E2, E3) → E3

4

Example funcon
seq (Comm, Comm) : Comm

‣ Dynamic semantics:

C1 → C1′
seq(C1, C2) → seq(C1′, C2)

seq(skip, C2) → C2 C1 −/→
seq(C1, C2) → C2

OR

5

Example funcon
alt (Proc, Proc) : Proc

‣ Dynamic semantics:

P1 → P1′
alt(P1, P2) → P1′

a

a

P2 → P2′
alt(P1, P2) → P2′

a

a

6

A symmetric relation R on ground terms
is a bisimulation when:

P1 , P2 are bisimilar (P1 ↔ P2) when

there exists a bisimulation relating them

Standard bisimilarity
[Park 1981; Milner]

P1

P2

R

P1′a

P2′
R

a

7

Standard bisimilarity
proofs

Example: alt(P1, P2) ↔ alt(P2, P1)

‣ prove for all ground terms P1, P2

‣ re-prove whenever the current
language is extended

‣ bisimilarity is not guaranteed to be
preserved by language extension

8

• Suppose Proc includes only ‘alt’ and
some constant with no transitions at
all. We have P1 ↔ P2 for all P1, P2.
If we now extend Proc with a further
constant having some transition (with
label a), P1 ↔ P2 no longer holds

for all P1, P2.

• We have alt(P, P) ↔ P for all P.
If we add a further constant that can
make a transition with a new label b,
alt(P, P) ↔ P no longer holds…

Non-preservation of
standard bisimilarity

P1 → P1′
alt(P1, P2) → P1′

a

a

P2 → P2′
alt(P1, P2) → P2′

a

a

9

A symmetric relation R on open terms
is a formal-hypotheses bisimulation
when for all sets of hypotheses
 x−a→y about variables x, y :

P1 , P2 are fh-bisimilar (P1 ↔fh P2) when

there exists an fh-bisimulation relating them

FH-bisimilarity
[De Simone 1985, Rensink 2000]

P1

P2

R

P1′a

P2′
R

a

10

FH-bisimilarity proofs
Example: alt(x1, x2) ↔fh alt(x2, x1)

‣ prove it for the specified open terms

‣ instantiation with ground terms P1, P2
gives alt(P1, P2) ↔ alt(P2, P1)

‣ fh-bisimilarity is guaranteed to be
preserved by language extension

11

For rules in positive GSOS format:

‣ Disjoint extension with no new labels
always preserves fh-bisimilarity

‣ Disjoint extension with new labels
usually preserves fh-bisimilarity – but
not always ‘improper’ equivalences, e.g.:
 alt(x, x) ↔fh x alt(x, 0) ↔fh x

Published results
[M, Mousavi, Reniers, in Proc EXPRESS 2010]

12

Component-based
bisimilarity

Components

‣ funcons: simpler than language constructs

Funcon specifications

‣ I-MSOS rules: independent

Funcon equivalences

‣ fh-bisimilarity: preserved

13

reusable

PLANCOMPS
Programming
Languages

Components
 and their
Specifications

C# Java …

…

 fundamental constructs
‘funcons’

translation
(incl. DSLs)

14

