Component-based
bisimilarity
Peter D Mosses, Swansea University

IFIPWG 2.11 Meeting, 25-27 June 2012, Halmstad, Sweden

PLANCOMPS

Programming

(incl. DSLs) |
. translation .
Components
and their QQQQQQQQQ0QQQQQQ -

Specifications fundamental constructs

¢)
reusable funcons

Funcon specifications

Structural Operational Semantics?
Reduction Semantics?

» non-modular ®

Modular SOS?

» modular ©, but requires explicit labels ®

Implicitly-Modular SOS?

» modular ©, and labels are left implicit ©

Example funcon

cond (Expr, Expr, Expr) : Expr
E, = E/
cond(E|, E, E3) — cond(E, ' Ey, E3)

cond(true, E, E3) — E;

cond(false, Ey, E3) — E3

Example funcon

seq (Comm, Comm) : Comm

C—C
seq(Ci, C7) — seq(C|', C>)

seq(skip, C2) > ¢ OR C +
seq(Ci, C2) = (2

Example funcon

alt (Proc, Proc) : Proc

PI = Py’

alt(P1, P2) % Py’

P, 9 Py’

alt(P, P) < Py’

Standard bisimilarity

[Park 1981; Milner]

A symmetric relation R on ground terms

is a bisimulation when: a
P) > P|’

R| R:

P\, P> are bisimilar (Py & P;) when

there exists a bisimulation relating them

Standard bisimilarity
proofs

Example: alt(Pi, P2) & alt(P2, Pi)

» prove for all ground terms P, P,

» re-prove whenever the current
language is extended

» bisimilarity is not guaranteed to be
preserved by language extension

Non-preservation of
standard bisimilarity

-

PI = Py’

alt(Py, P2) % Py’

P, 9 Py’

alt(P, P2) < Py’

J

® Suppose Proc includes only ‘alt’ and
some constant with no transitions at

all. We have Py & Pafor all P,, Pa.

If we now extend Proc with a further
constant having some transition (with

label a), P1 & P2 no longer holds
for all PI, PZ.

® We have alt(P, P) & P for all P.

If we add a further constant that can
make a transition with a new label b,
alt¢(P, P) - P no longer holds...

FR-bisimilarity

[De Simone 1985, Rensink 2000}

A symmetric relation R on open terms
is a formal-hypotheses bisimulation
when for all sets of hypotheses P, < p’

x—a—y about variables x,y : R| R

Py ---9..s Plzl
Pi, P> are fh=bisimilar (P & m P2) when

there exists an fh-bisimulation relating them

FH-bisimilarity proofs

Example: alt(xi, x2) & ¢ alt(xz, xi1)

» prove it for the specified open terms

» instantiation with ground terms Py, P,
gives alt(Pi, P2) & alt(P2, P)

» fh-bisimilarity is guaranteed to be
preserved by language extension

Published results

[M, Mousavi, Reniers, in Proc EXPRESS 2010]

For rules in positive GSOS format:

» Disjoint extension with no new labels
always preserves fh-bisimilarity

» Disjoint extension with new labels
usually preserves th-bisimilarity — but
not always ‘improper’ equivalences, e.g.:

alt(x,x) ©m x alt(x,0) & m x

Component-based
bisimilarity
Components
» funcons: simpler than language constructs
Funcon specifications
» I-MSOS rules: independent

Funcon equivalences

» fh-bisimilarity: preserved

PLANCOMPS

Programming

(incl. DSLs) |
. translation .
Components
and their QQQQQQQQQ0QQQQQQ -

Specifications fundamental constructs

¢)
reusable funcons

14

