2016.08.23

Open Problems from my
perspective

INDIANA UNIVERSITY

Our group (last 3 years)

Our group (last 3 years)

High-
level parallel
prog.

Our group (last 3 years)

High-
level parallel
prog.

Our group (last 3 years)

Deterministic "arallél
parallelism €f€cts Profiling
GPUs High- Concurrent
level parallel data structs
prog.
Irregular Mem mgmt.
dpps Compiler

construction

Our group (last 3 years)

POPL’ 14 PLDI'I 4
Deterministic Farallel ot
parallelism efiects Profiling
OOPSLA’ | 4 GPUs ngh' Concurrent CEP' [5A
kel 15 level parallel data structs
Drog. .
Irregular em mgmt. S
apps Compiler
PPoPP’ | 6 COnStrUCtiOﬂ

ICFP’16

1. Archival-quality computation

1. Archival-quality computation

1. Archival-quality computation

Amazing Science Blog

1. Archival-quality computation

Amazing Science Blog

_— Open Link in New Tab
Open Link in New Window
Open Link in Incognito Window

Save Link As...
€ Copy Link Address

Inspect

1. Archival-quality computation

Amazing Science Blog

Repraduce/Archive

Operk_k iIn New Tab
Open‘i_mk In New Window

Open Link in Incognito Window

Save Link As...
€ Copy Link Address

Inspect

e

Determinism
Enforcement

input-data » JO »

Determinism control
* Environment
Enforcement

input-data » JO »

Determinism control

* Environment

Enforcement . Execution

input-data » JO »

Determinism control

* Environment

Enforcement . Execution

» dynamic

e

Determinism
Enforcement

control

* Environment
e Execution

» dynamic
» static

Environment:;

)

P

input-data

Environment:;

input-data

Deterministic base image

input-data

Deterministic base image

& 5

docker NixOs

input-data

Deterministic base image

& 5

docker NixOs

Execution:

Execution:

Dynamic determinism enforcement

Dynamic determinism enforcement

\/

Dynamic determinism enforcement

e Kendo
e D[hreads

Dynamic determinism enforcement

: (Inputs ,
) = Outputs

JO : (Inputs ,) = Outputs

>

J Reproducibility

: (Inputs ,) = Outputs

P
——
J Reproducibility
I Portability

: (Inputs ,) = Outputs

P
——
J Reproducibility
I Portability

: (Inputs ,) = Outputs

P
——
J Reproducibility
I Portability

: (Inputs , Sched.Trace) — Outputs

P
——
J Reproducibility
I Portability

: (Inputs , Sched.Trace) — Outputs

o @

mozilla

P
——
J Reproducibility
I Portability

: (Inputs , Sched.Trace) — Outputs

- g

mozilla

P
——
J Reproducibility
I Portability

- Still open problems for dynamic determinism enforcment:
user-space process tree determinism, file systems

?

J Reproducibility

J Portability

static ? checking

J Reproducibility

J Portability

Tony Hoare, 1971, on the prospect of StAtIC (:Ilecl(ing

TOWARDS A THEORY OF
PARALLEL PROGRAMMING
C. A. R. HOARE

(1971)

OBJECTIVES

The objectives in the construction of a theory of parallel programming as a

® 1. L 1 * 1
) I o s PR . S [

Tony Hoare, 1971, on the prospect of StAtIC (:I]ﬂ(:l(illg

"It is therefore very important that a high-level language designed for
[parallel programming| should provide complete security against time-
dependent errors by means of a compile-time check.”

r X

TOWARDS A THEORY OF
PARALLEL PROGRAMMING
C. A. R. HOARE

(1971)

OBJECTIVES

The objectives in the construction of a theory of parallel programming as a
) LY A S S R . S [¥ W T

Determinism as a Safety property

{-# LANGUAGE Safe #-}
import Control.LVish

X = <your untrusted code>
main :: IO ()
main = print X

Determinism as a Safety property

{-# LANGUAGE Safe #-}
import Control.LVish
X = <.. runPar ..>
main :: IO ()

main = print X

Determinism as a Safety property

{-# LANGUAGE Safe #-}
import Control.LVish
X = <.. runPar e

main :: IO ()
main = print X

{-# LANGUAGE Safe #-}

main :: Det ()
main = print X

Relationship to program
generation

Archiving programs in source form requires precise
representations of the:

e Ccode
e compiler
e environment

(A “pertect name” or hash for a program.)

2. Composable Autotuning

e [ypically:
* (GGlobal parameters
* Hacky Scripts

* Fixed K-dimensional search spaces

S cat “1,2,3” > params.txt
$./run stuff.sh

2. Composable Autotuning

e [ypically:
* (GGlobal parameters
* Hacky Scripts

* Fixed K-dimensional search spaces

S cat “1,2,3” > params.txt
$./run stuff.sh

|deal

import A (a)
import B (b)

do a — may use auto-tuning
b — may use auto-tuning

One idea

One idea

 Use an Applicative transformer (Tune m a)

One idea

 Use an Applicative transformer (Tune m a)

* (Gather params before running m-

One idea

 Use an Applicative transformer (Tune m a)
* (Gather params before running m-

e But individual runs are still anonymous

One idea

 Use an Applicative transformer (Tune m a)

* (Gather params before running m-

e But individual runs are still anonymous

Avoid:

X

runSearch $

setParam (Proxy::Proxy "a") (0,10) $
setParam (Proxy::Proxy "b") (10,20) $
go

Problems:

* Persistence is awkward
e Store learned results
 Comes back to naming programs:
 What is the same program?
* And naming choices:

e choice structure is a (un)labeled tree”

3. Fusion for nested,
rregular data

3. Fusion for nested,
rregular data

foldl setUnion
map nbrs states

3. Fusion for nested,
rregular data

foldl setUnion
map nbrs states

do acc <« newEmptySet
forEach x € states:

forEach n € nbrs(x):
insert n acc

4. Data structure
representation rewrites

4. Data structure
representation rewrites

Set (Maybe a) = (Bool, Set a)

4. Data structure
representation rewrites

Set (Maybe a) = (Bool, Set a)

from s

(Nothing € s,
map fromJdust
(filter i1sJust s))

4. Data structure
representation rewrites

Set (Maybe a) = (Bool, Set a)

from s = (Nothing € s,
map fromJdust
(filter 1isJust s))

o (Closed type families are sutficient for this example.)

5. User-friendly
metaprogramming

5. User-friendly
metaprogramming

 Should | need to know whether a particular
expression happens at a particular stage?

5. User-friendly
metaprogramming

 Should | need to know whether a particular
expression happens at a particular stage?

e Staging goals

5. User-friendly
metaprogramming

 Should | need to know whether a particular
expression happens at a particular stage?

e Staging goals

 this function isn’t called at runtime (INLINE)

5. User-friendly
metaprogramming

 Should | need to know whether a particular
expression happens at a particular stage?

e Staging goals
 this function isn’t called at runtime (INLINE)

* this datatype doesn't appear at runtime

5. User-friendly
metaprogramming

Should | need to know whether a particular
expression happens at a particular stage?

Staging goals
 this function isn’t called at runtime (INLINE)
* this datatype doesn't appear at runtime

* this type class creates no dictionaries at runtime

o. Deterministic par. without
l00Se ends

o. Deterministic par. without
l00Se ends

 Don't assume associativity, commutativity

o. Deterministic par. without
l00Se ends

 Don't assume associativity, commutativity

e Accelerate, DPJ, etc...

o. Deterministic par. without
l00Se ends

 Don't assume associativity, commutativity
* Accelerate, DPJ, etc...

e Prove it!

o. Deterministic par. without
l00Se ends

 Don't assume associativity, commutativity
* Accelerate, DPJ, etc...
* Prove it!

* (... and integrate with static compiler checks like
-XSafe)

o. Deterministic par. without
l00Se ends

 Don't assume associativity, commutativity
* Accelerate, DPJ, etc...

e Prove it!

* (... and integrate with static compiler checks like
-XSafe)

e (WIP: w/ Ranjit Jhala)

