
2016.08.23

Open Problems from my
perspective

Our group (last 3 years)

Our group (last 3 years)

High-
level parallel

prog.

Our group (last 3 years)

High-
level parallel

prog.

Our group (last 3 years)

High-
level parallel

prog.

Concurrent
data structs

Mem mgmt.

GPUs

Deterministic
parallelism

Parallel 
effects

Irregular
apps Compiler

construction

Profiling

Our group (last 3 years)

High-
level parallel

prog.

[POPL’14]

[PPoPP’16]

[PLDI’14]

[ICFP’15A]

[ICFP’15B]

[OOPSLA’14]

[Haskell’15]

[ICFP’16]

[PLDI’16]

Concurrent
data structs

Mem mgmt.

GPUs

Deterministic
parallelism

Parallel 
effects

Irregular
apps Compiler

construction

Profiling

Computational
Science

1. Archival-quality computation

Computational
Science

1. Archival-quality computation

Amazing Science Blog

Computational
Science

1. Archival-quality computation

Amazing Science Blog

Computational
Science

1. Archival-quality computation

Amazing Science Blog

Reproduce/Archive

pComputational
Science

1. Archival-quality computation

p

pinput-data

pinput-data

Determinism  
Enforcement

pinput-data

Determinism  
Enforcement • Environment

control

pinput-data

Determinism  
Enforcement • Environment

• Execution

control

pinput-data

Determinism  
Enforcement • Environment

• Execution
‣ dynamic

control

pinput-data

Determinism  
Enforcement • Environment

• Execution
‣ dynamic
‣ static

control

pinput-data

pinput-data

Environment:

pinput-data

Deterministic base image

Environment:

pinput-data

Deterministic base image

NixOS

Environment:

pinput-data

Deterministic base image

NixOS

Execution:

p
Execution:

p
Execution:

Dynamic determinism enforcement

p
Dynamic determinism enforcement

p
Dynamic determinism enforcement

p
Dynamic determinism enforcement

•Kendo
•DThreads
•…

p
: (Inputs) → Outputs , NumThreads

p

Reproducibility

: (Inputs) → Outputs , NumThreads

p

Reproducibility

Portability

: (Inputs) → Outputs , NumThreads

p

Reproducibility

Portability

: (Inputs) → Outputs , GPU model

p

Reproducibility

Portability

: (Inputs) → Outputs , OS Version

p

Reproducibility

Portability

: (Inputs) → Outputs , Sched.Trace

p

Reproducibility

Portability

: (Inputs) → Outputs , Sched.Trace

rr

p

Reproducibility

Portability

: (Inputs) → Outputs , Sched.Trace

rr

• Still open problems for dynamic determinism enforcment: 
user-space process tree determinism, file systems

?
Reproducibility

Portability

?
Reproducibility

Portability

Static checking

Tony Hoare, 1971, on the prospect of Static checking

"It is therefore very important that a high-level language designed for
[parallel programming] should provide complete security against time-

dependent errors by means of a compile-time check."

Tony Hoare, 1971, on the prospect of Static checking

Determinism as a Safety property

{-# LANGUAGE Safe #-}
import Control.LVish
x = <your untrusted code>
main :: IO ()
main = print x

Determinism as a Safety property

{-# LANGUAGE Safe #-}
import Control.LVish
x = <your untrusted code>
main :: IO ()
main = print x

{-# LANGUAGE Safe #-}
import Control.LVish
x = <… runPar _ …>
main :: IO ()
main = print x

Determinism as a Safety property

{-# LANGUAGE Safe #-}
import Control.LVish
x = <your untrusted code>
main :: IO ()
main = print x

{-# LANGUAGE Safe #-}
import Control.LVish
x = <… runPar _ …>
main :: IO ()
main = print x

{-# LANGUAGE Safe #-}
…
main :: Det ()
main = print x

Relationship to program
generation

• Archiving programs in source form requires precise
representations of the:

• code

• compiler

• environment

• (A “perfect name” or hash for a program.)

2. Composable Autotuning
• Typically:

• Global parameters

• Hacky Scripts

• Fixed K-dimensional search spaces

$ cat “1,2,3” > params.txt
$./run_stuff.sh

2. Composable Autotuning
• Typically:

• Global parameters

• Hacky Scripts

• Fixed K-dimensional search spaces

$ cat “1,2,3” > params.txt
$./run_stuff.sh

Ideal
import A (a)
import B (b)
…
 do a — may use auto-tuning
 b — may use auto-tuning
 …

One idea

One idea
• Use an Applicative transformer (Tune m a)

One idea
• Use an Applicative transformer (Tune m a)

• Gather params before running `m`

One idea
• Use an Applicative transformer (Tune m a)

• Gather params before running `m`

• But individual runs are still anonymous

One idea
• Use an Applicative transformer (Tune m a)

• Gather params before running `m`

• But individual runs are still anonymous

instance Monad m => Functor (TuneT m) where
fmap f (TuneT g l) =
TuneT (\p -> do x <- g p; return (f x)) l

instance Monad m => Applicative (TuneT m) where
pure x = TuneT (\[] -> return x) []
TuneT f l1 <*> TuneT g l2 =
let len1 = length l1
in TuneT (\ls -> let (x,y) = splitAt len1 ls

in do f’ <- f x
v <- g y
return $ f’ v)

(l1 ++ l2)

Figure 9. The full Functor and Applicative instances for TuneT.
Here the applicative instance ensures that the subcomputations each
get their own share of the parameter settings.

Note that this business of abstracting over an underlying monad,
m, was not necessary with TuneM above, because any monad could
be made an instance of TuneM.

In this applicative TuneT setting, getParam is defined as:

getParam :: Monad m => Domain -> TuneT m Int
getParam d = TuneT (\[p] -> return p) [r]

Because getParam returns a non-monadic value, do notation
cannot be used, and instead we use applicative combinators. For
example, to add the value of two tuning parameters, we would
write:

(+) <$> getParam (1,10) <*> getParam (0,3)

And then to run a tunable computation, a particular search
strategy might expose the following run function, which, given a
computation that exposes a Score, searches for values of Params
that maximize that score.

tune :: Tune IO (a,Score) -> IO (a, Params, Score)
...
type Score = Double -- Simple scoring...

In this case, we assume the underlying monad is IO, although it
could also accept any Monad m, provided there is a function to run
that monad inside IO, i.e., m a -> IO a. In either case, the tune
function must be able to run the underlying monadic computations,
so that it can execute different configurations as it varies Params.

Many tunable computations gather runtime timings, which ne-
cessitates IO. However, it is also important to consider tuning pure
functions and monadic computations with dischargeable effects:

tunePure :: Monad m => (forall b . m b -> b) ->
Tune m (a,Score) -> (a, Params, Score)

This might arise, for example, if we are tuning a computation
against an abstract, deterministic performance model.

To conclude this section, Applicative offers a semantic fit for
auto-tuning with fixed search spaces. It accomplishes the “stag-
ing” whereby parameters used are gathered before the tunable com-
putations begin execution, without necessitating the indirection of
requesting parameters by index or key. The drawback of the ap-
plicative approach—and our reason to consider one more alterna-
tive design—is that an applicative that returns a monadic value is
awkward to deal with. It is a form of effect composition that works

much less smoothly than, e.g., monad transformers, which retain
do-notation.

7.2 Monads with Extensible Effects
The final solution we consider here—and which we ultimately
recommend—uses a modern mechanism for composable effects
in Haskell. In particular, we employ the extensible-effects
library by Kiselyov et. al.2. As described in a 2013 paper [14],
this framework replaces monad transformer stacks with a single
monad Eff r a, where r encodes the set of effects, and constraints
such as Member (State Int) r, capture the fact that r contains
at least a state effect storing an integer state.

For the purpose of auto-tuning, we add an effect Param s. This
is akin to a Reader effect, indicating that the computation reads
a parameter identified by s. We could use any type for s but we
choose type-level strings, i.e. of kind Symbol, which provide us
with an unlimited source of unique types without requiring extra
newtype declarations.

Since GHC 7.8, the GHC.TypeLits module provides facilities
for dealing with type-level string literals, including synthesizing
instances of the KnownSymbol class, which we use below.

-- The data type for tuning effects:
data Param s a =

KnownSymbol s => GetParm (Int -> a)
deriving (Typeable)

-- getParam is polymorphic in *which* param:
getParam :: (Member (Param s) r,

KnownSymbol s, Typeable s) =>
Proxy s -> Eff r Int

The return value of getParam is still a simple Int. For its input,
here we use the standard approach of passing a Proxy datatype—
with a phantom type argument—as a means of passing in a type
argument to the function. To invoke getParam then, the user needs
only pass in the type-level name of the parameter:

go = do x <- getParam (Proxy::Proxy "a")
y <- getParam (Proxy::Proxy "b")
...

Type-level keys By naming parameters at the type level, it is
possible to know which parameters a computation uses before
running it. A runSearch function provide by a search strategy
then takes a particular parameter and the desired domain for that
parameter. For example:

x = runSearch $
setParam (Proxy::Proxy "a") (0,10) $
setParam (Proxy::Proxy "b") (10,20) $
go

Here it is possible to write different versions of runSearch for
different search strategies: e.g. hill climbing vs. genetic algorithms.
Thus it is not necessary to have a type class like TuneM above,
because the selection of monad (Eff) does not determine the search
strategy. Further, in the above example, any parameter expected by
the computation but not provided by a runParam would result in a
static type error.

Thus, the extensible effect approach ensures safe parameter
access: it is impossible to request a parameter value that has not
been provided by the tuning framework. Further, the search domain
of all parameters is known before execution begins. And it also

2
https://hackage.haskell.org/package/extensible-effects

9

Avoid:

Problems:
• Persistence is awkward

• Store learned results

• Comes back to naming programs:

• What is the same program?

• And naming choices:

• choice structure is a (un)labeled tree?

3. Fusion for nested,
irregular data

3. Fusion for nested,
irregular data

fold1(setUnion,
 map(nbrs,states))

3. Fusion for nested,
irregular data

fold1(setUnion,
 map(nbrs,states))

do acc ← newEmptySet()
 forEach x ∈ states:
 forEach n ∈ nbrs(x):
 insert(n,acc)

4. Data structure
representation rewrites

4. Data structure
representation rewrites

 Set (Maybe a) ⇒ (Bool, Set a)

4. Data structure
representation rewrites

 Set (Maybe a) ⇒ (Bool, Set a)

from s = (Nothing ∈ s,
 map fromJust
 (filter isJust s))

4. Data structure
representation rewrites

• (Closed type families are sufficient for this example.)

 Set (Maybe a) ⇒ (Bool, Set a)

from s = (Nothing ∈ s,
 map fromJust
 (filter isJust s))

5. User-friendly
metaprogramming

5. User-friendly
metaprogramming

• Should I need to know whether a particular
expression happens at a particular stage?

5. User-friendly
metaprogramming

• Should I need to know whether a particular
expression happens at a particular stage?

• Staging goals

5. User-friendly
metaprogramming

• Should I need to know whether a particular
expression happens at a particular stage?

• Staging goals

• this function isn’t called at runtime (INLINE)

5. User-friendly
metaprogramming

• Should I need to know whether a particular
expression happens at a particular stage?

• Staging goals

• this function isn’t called at runtime (INLINE)

• this datatype doesn’t appear at runtime

5. User-friendly
metaprogramming

• Should I need to know whether a particular
expression happens at a particular stage?

• Staging goals

• this function isn’t called at runtime (INLINE)

• this datatype doesn’t appear at runtime

• this type class creates no dictionaries at runtime

6. Deterministic par. without
loose ends

6. Deterministic par. without
loose ends

• Don’t assume associativity, commutativity

6. Deterministic par. without
loose ends

• Don’t assume associativity, commutativity

• Accelerate, DPJ, etc…

6. Deterministic par. without
loose ends

• Don’t assume associativity, commutativity

• Accelerate, DPJ, etc…

• Prove it!

6. Deterministic par. without
loose ends

• Don’t assume associativity, commutativity

• Accelerate, DPJ, etc…

• Prove it!

• (… and integrate with static compiler checks like
-XSafe)

6. Deterministic par. without
loose ends

• Don’t assume associativity, commutativity

• Accelerate, DPJ, etc…

• Prove it!

• (… and integrate with static compiler checks like
-XSafe)

• (WIP: w/ Ranjit Jhala)

