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- Still open problems for dynamic determinism enforcment:
user-space process tree determinism, file systems
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"It is therefore very important that a high-level language designed for
[parallel programming| should provide complete security against time-
dependent errors by means of a compile-time check.”
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{-# LANGUAGE Safe #-}
import Control.LVish
X = <.. runPar e

main :: IO ()
main = print X

{-# LANGUAGE Safe #-}

main :: Det ()
main = print X




Relationship to program
generation

Archiving programs in source form requires precise
representations of the:

e Ccode
e compiler
e environment

(A “pertect name” or hash for a program.)
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|deal

import A (a)
import B (b)

do a — may use auto-tuning
b — may use auto-tuning
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One idea

 Use an Applicative transformer (Tune m a)

* (Gather params before running m-

e But individual runs are still anonymous

Avoid:

X

runSearch $

setParam (Proxy::Proxy "a") (0,10) $
setParam (Proxy::Proxy "b") (10,20) $
go



Problems:

* Persistence is awkward
e Store learned results
 Comes back to naming programs:
 What is the same program?
* And naming choices:

e choice structure is a (un)labeled tree”
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3. Fusion for nested,
rregular data

foldl setUnion
map nbrs states

do acc <« newEmptySet
forEach x € states:

forEach n € nbrs(x):
insert n acc
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4. Data structure
representation rewrites

Set (Maybe a) = (Bool, Set a)

from s = (Nothing € s,
map fromJdust
(filter 1isJust s))

o (Closed type families are sutficient for this example.)
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5. User-friendly
metaprogramming

Should | need to know whether a particular
expression happens at a particular stage?

Staging goals
 this function isn’t called at runtime (INLINE)
* this datatype doesn't appear at runtime

* this type class creates no dictionaries at runtime
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o. Deterministic par. without
l00Se ends

 Don't assume associativity, commutativity
* Accelerate, DPJ, etc...

e Prove it!

* (... and integrate with static compiler checks like
-XSafe)

e (WIP: w/ Ranjit Jhala)



