Modular Analysis of Attribute Grammars

Ted Kaminski and Eric Van Wyk

University of Minnesota

WG 2.11 - June, 2012, Halmstad

Extensible language
frameworks and modular
analysis

PI‘Og rammer

Language
imports
extensions

Language
Extensions
writes

Feature
Designers

-

=

- writes
—

-

class Demo {

[
int demoMethod () { natural Syntax

List<List<Integer>> dlist ; e semantic analysis
int T ; e composable extensions
int SELECT ;

connection ¢ "jdbc:derby:/home/derby/db/testdb"
with table person [person_id INTEGER,
first_name VARCHAR,
last_name VARCHAR] ,
table details [person_id INTEGER,
age INTEGER] ;
Integer limit = 18 ;
ResultSet rs = using c query {
SELECT age, gender, last_name
FROM person , details
WHERE person.person_id = details.person_id
AND details.age > limit } ;
Integer = rs.getInteger("age");
String gender = rs.getString("gender");
boolean b ;
b = table (age > 40 T x
gender == "M" : T F) ;

Composing language specifications

v

It should “just work”.

v

Many formalisms naturally compose.

v

Take the set union of the component sets.
» context free grammars

» attribute grammars

> term rewriting systems

v

But certain desirable properties may not hold.

Context free grammars

Gy U Gt U G} U ... U G

» U of sets of nonterminals, terminals, productions
» Composition of all is an context free grammar.

» Is it ambiguous, useful for deterministic (LR) parsing?

Context free grammars

[c] v [<]

» U of sets of nonterminals, terminals, productions

» Composition of all is an context free grammar.

» Is it ambiguous, useful for deterministic (LR) parsing?
» conflictFree(Gy U GZ) holds

Context free grammars

@

U of sets of nonterminals, terminals, productions

v

» Composition of all is an context free grammar.

v

Is it ambiguous, useful for deterministic (LR) parsing?
conflictFree(Gy U GZ) holds
conflictFree(Gy U GZ) holds

v

v

Context free grammars

I

» U of sets of nonterminals, terminals, productions

» Composition of all is an context free grammar.

» Is it ambiguous, useful for deterministic (LR) parsing?
» conflictFree(Gy U GZ) holds

» conflictFree(Gy U GZ) holds

» conflictFree(Gy U Gf) holds

Context free grammars

» U of sets of nonterminals, terminals, productions
» Composition of all is an context free grammar.
» Is it ambiguous, useful for deterministic (LR) parsing?
» conflictFree(Gy U GZ) holds
» conflictFree(Gy U GZ) holds
» conflictFree(Gy U Gf) holds
» conflictFree(Gy U GE U GZU ... U GE) may not hold

Attribute grammars

AGy U AGE U AGE: U ... U AGL

» U of sets of attributes, attribute equations, occurs-on
declarations

» Composition of all is an attribute grammar.

» Completeness: V production, V attribute, 3 an equation

Attribute grammars

=[]

» U of sets of attributes, attribute equations, occurs-on
declarations

» Composition of all is an attribute grammar.
» Completeness: V production, V attribute, 3 an equation
» complete(AGy U AGE) holds

Attribute grammars

AGy U

» U of sets of attributes, attribute equations, occurs-on
declarations

v

Composition of all is an attribute grammar.

v

Completeness: V production, V attribute, 3 an equation
complete(AGy U AGE) holds
complete(AG U AGZ) holds

v

v

Attribute grammars

AGy U

» U of sets of attributes, attribute equations, occurs-on
declarations

» Composition of all is an attribute grammar.

» Completeness: V production, V attribute, 3 an equation
» complete(AGy U AGE) holds

» complete(AGy U AGZ) holds

» complete(AGy U AGL) holds

Attribute grammars

» U of sets of attributes, attribute equations, occurs-on
declarations

» Composition of all is an attribute grammar.

» Completeness: V production, V attribute, 3 an equation
» complete(AGy U AGE) holds

» complete(AGy U AGZ) holds

» complete(AGy U AGL) holds

» complete(AGy U AGE U AGE U ... UAGL) may not hold

Attribute grammars

» U of sets of attributes, attribute equations, occurs-on
declarations

» Composition of all is an attribute grammar.

» Completeness: V production, V attribute, 3 an equation
» complete(AGy U AGE) holds

» complete(AGy U AGZ) holds

» complete(AGy U AGL) holds

» complete(AGy U AGE U AGE U ... UAGL) may not hold

» similarly for non-circularity of the AG

Term rewriting systems

.. similarly ...

So, they easily compose.

The non-expert program is happy, maybe.

But what assurances can we provide that the composition will
be a “good” one?

Detecting problems, ensuring composition

When can some analysis of the language specification be
applied?
When ...

1. the host language is developed 7

2. a language extensions is developed 7

3. when the host and extensions are composed ?

4. when the resulting language tools is run ?

When to analyze

Programmer Language
imports Langua.lge Feature
extensions Extensions Designers

writes

Libraries, and modular type checking

» Libraries “just work”
» Type checking is done by the library writer, modularly.

» Language extensions should be like libraries, composition
of “verified” extensions should “just work.”

10

Modular determinism analysis for grammars, 2009

Gy U Gt U G} U ... U G

11

Modular determinism analysis for grammars, 2009

» isComposable(Gy, GL) A conflictFree(Gy U G2) holds

11

Modular determinism analysis for grammars, 2009

@

» isComposable(Gy, GL) A conflictFree(Gy U G2) holds
» isComposable(Gy, G2) A conflictFree(Gy U GZ) holds

11

Modular determinism analysis for grammars, 2009

0[]

» isComposable(Gy, GL) A conflictFree(Gy U G2) holds
» isComposable(Gy, G2) A conflictFree(Gy U GZ) holds
» isComposable(Gy, GL) A conflictFree(Gy U GL) holds

11

Modular determinism analysis for grammars, 2009

=l O

» isComposable(Gy, GL) A conflictFree(Gy U G2) holds
isComposable(Gy, G2) A conflictFree(Gy U GZ) holds
isComposable(Gy, GL) A conflictFree(Gy U GL) holds
these imply conflictFree(Gy U GE U GZ U ...) holds

v

v

v

11

Modular determinism analysis for grammars, 2009

=l O

» isComposable(Gy, G A conflictFree(Gy U Gl) holds
» isComposable(Gy, G,f—) A conflictFree(Gy U GZ) holds
» isComposable(Gy, GL) A conflictFree(Gy U GL) holds
» these imply conflictFree(Gy U GE U GZ U ...) holds
> (Vi € [1, n].isComposable(Gy, GL) A
conflictFree(Gy U {Gf)})
— conflictFree(Gy U { GZ,..., GE})

» Some restrictions to extension introduced syntax apply, of
course.

Modular completeness analysis for attribute
grammars

AGy U AGE U AGE U ... U AG

12

Modular completeness analysis for attribute
grammars

=[]

» modComplete(AGy U AGL) holds

12

Modular completeness analysis for attribute
grammars

ACH U

» modComplete(AGy U AGL) holds
» modComplete(AGy U AGZ) holds

12

Modular completeness analysis for attribute
grammars

i [

» modComplete(AGy U AGL) holds
» modComplete(AGy U AGZ) holds
» modComplete(AGy U AGL) holds

12

Modular completeness analysis for attribute
grammars

» modComplete(AGy U AGL) holds
modComplete(AG U AGZ) holds
modComplete(AGy U AGL) holds
these imply complete(AGy U AGE U AGE U ...) holds

v

v

v

12

Modular completeness analysis for attribute
grammars

» modComplete(AGy U AGL) holds
modComplete(AG U AGZ) holds

modComplete(AGy U AGL) holds

these imply complete(AGy U AGE U AGE U ...) holds
(Vi € [1, n].modComplete(AG y, AGF))

— complete(AGy U {AGE, ..., AGE}).

v

v

v

v

12

Modular completeness analysis for attribute
grammars

» modComplete(AGy U AGL) holds
» modComplete(AGy U AGZ) holds
» modComplete(AGy U AGL) holds
» these imply complete(AGy U AGE U AGE U ...) holds

» (Vi € [1, n].modComplete(AG 4, AGE))
— complete(AGy U {AGE, ..., AGE}).
» similarly for non-circularity of the AG

» Again, some restrictions on extensions.

12

The details ...

Attribute grammars (AGs), quick refresher

AGs add two things to context free grammars

1. attributes: named values, with specified types.

>

>

These “decorate” nonterminals.
Synthesized attributes propagate information up the tree.

Inherited attributes ... down the tree.

e.g. errors :: [String] occurs on Expr
e.g. cCodeTrans :: String occurs on Stmt ...
e.g. type :: TypeRep

e.g env :: [Map<String, Declaration>]

13

Attribute grammars (AGs), quick refresher

AGs add two things to context free grammars
2. attribute equations, associated with productions
» These assign values to attributes on nodes referenced in
the production.
» For example:

production add

e::Expr ::= l::Expr ’+’ r::Expr

{

e.errors = l.errors ++ r.errors ++
if (... addition no defined on 1l.type ...)
then ["Error on addition..."]
else [] ;

e.type = resolve (l.type, r.type) ;
.env = e.env ;
r.env = e.env ;

!

14

Extensibility: safe composability

New attributes

2

o

g Host

8 Ext 2
o

=

Q

=2

Ext 1 Problem

independent
extensions

15

Extensibility: safe composability

New productions

New attributes

Host

code
gen

__—

for

independent
extensions

16

Forwarding

» A production builds another AST and forwards requests
for undefined attributes to it.
» Language extension productions forward to their
translation in the host language.
» That is, a tree of host language constructs.
» Forwarding make completeness possible, but doesn't
ensure it.

production for_loop
s::5tmt ::= var::Name lower::Expr upper:Expr body::Stmt
{ s.errors = ... ;
forwards to seq (assign (var, lower) ,
while (lessThanEqual (var, upper),
seq (body ,
assign (var,
plus (var, one)))

17

Modular completeness analysis

» The analysis modComplete is defined as follows:
modComplete(AG", AGF) &
noOrphanOccursOn(AG", AGE) A
noOrphanAttrEqs(AG" , AGF) A
noOrphanProds(AG", AGE) A
synComplete(AG", AGF) A
modularFlow Types(flow Types(AG™),
flow Types(AG" U AGF)) A
inhComplete(AG", AGE, flowTypes(AG" U AGF))

» Some “structural” requirements, some flow-type
requirements

» Silver's module system prevents duplicate nonterminal,
attribute, production declarations.

18

No orphan occurs on declarations

“an AG declares a occurs on nt only if it declares or exports
a or nt”

noOrphanOccursOn(AG" | AGF)

holds if and only if each occurs-on declaration
“attribute a occurs on nt” in AG" U AGE

is exported by the grammar declaring a or the grammar
declaring nt.

19

No orphan attribute equations

“an AG provides an equation n.a=e on p with l.h.s.
nonterminal nt only if it declares/exports the production p or
the occurs-on declaration a occurs on nt.”

noOrphanAttrEqs(AG", AGF)

holds if and only if each equation n.a = e in a production
p is exported by the grammar declaring the (non-aspect)
production p or the grammar declaring the occurs-on
declaration "attribute a occurs on nt" (where n has

type nt.)

20

No orphan production declarations

“Productions in extensions that build host language
nonterminals must forward.”

noOrphanProds(AG" | AGF)

holds if and only if for each production declaration p in
AG" U AGE with left hand side nonterminal nt, the
production p is either exported by the grammar declaring
nt, or p forwards.

21

Completeness of synthesized equations

“A production forwards or has equations for all its attributes,
these may be on aspect productions.”

synComplete(AG", AGF)

holds if and only if for each occurs-on declaration
attribute a occurs on nt, and for each non-forwarding
production p that constructs nt, there exists a rule
defining the synthesized equation p : x.a, where x is the
left hand side of the production.

22

Flow Types

v

A flow-type captures how information flow between
attributes.

» For a non-terminal, it maps synthesized attributes to the
inherited attributes on which it depends.

v

ftoe 2 As — 24

v

e.g. ftegr(type) = {env}

23

Modularity of flow types

“Host language attributes on host language nonterminals do
not depend on extension-declared inherited attributes.”

modularFlow Types(flow Types(AG™),
flow Types(AG" U AGF))

holds if and only if for each ft". € flowTypes(AG") and
ft"E ¢ flowTypes(AG" U AGE)
for all synthesized attributes s and for all nonterminals nt

ftHIE(s) C fth (s).

nt

such that attribute s occurs on nt is declared in AG",

24

Effective completeness of inherited equations

“All inherited attributes required to compute a synthesized
attribute on a node have defining equations.”

inhComplete(AG", AGE , flow Types(AG" U AGF))

holds if and only if for every production p in AGH U AGE
and for every access to a synthesized attribute n.s in an
expression within p (where n has type nt,) and for each
inherited attribute / € ft,.(s), there exists an equation
n.i = e for p.

25

A generalization

v

Silver does not identify “host” and “extensions.”

v

The analysis works on import grammar relationships.
» A grammar A that imports B is seen as an extension to B.

So, Silver libraries are hosts, in essence.

v

26

Evaluation

» Q: Are these restrictions too overbearing?
Al: No, they are turned on by default.
A2: No, except for reference attributes.

» Applied to Silver compiler’s Silver specs
1. We found a few bugs.
2. We moved some declarations to new grammars.
These were bad design “smells.”
3. We extended Silver

» Annotations allowing host language to be modularized
without respect to the rules.
These treat the "whole” host language, spread across
many modules, as one for the analysis.

> Default attributes.

» Reference attributes - rather severe restrictions.

All inherited attributes must be provided and no more can
be added.

27

Modular circularity analysis

» Analysis extends to check for no cycles, modularly.

» Instead of a flow type for each non-terminal, there is a set
of flow-graphs for each.

» Analysis ensures no new patterns of information flow are
added by an extension.

28

essons learned 7

» For extensible language frameworks
» Analysis - modular or don’t bother?

» But my undergrads like static completeness detection.

29

Some questions ...

29

Some

v

v

v

v

v

questions ... what to call these?

We've called this a “modular” analysis.

Maybe “static composition analysis”
» analysis that happens before composition

As opposed to “dynamic composition analysis”
» analysis that happens during composition

But “static” and “dynamic” suggest 2 points in time
» before and during run-time

We have more than 2 interesting points in time.

» 1. host development, 2. extension development,
3. composition, 4. translation, 5. execution

30

Thanks for your attention.

Questions?

http://melt.cs.umn.edu
evw@cs.umn.edu

31

http://melt.cs.umn.edu
evw@cs.umn.edu

