
Modular Analysis of Attribute Grammars

Ted Kaminski and Eric Van Wyk

University of Minnesota

WG 2.11 - June, 2012, Halmstad

0

Extensible language
frameworks and modular

analysis

0

1

class Demo {
int demoMethod () {
List<List<Integer>> dlist ;

int T ;

int SELECT ;

connection c "jdbc:derby:/home/derby/db/testdb"

with table person [person id INTEGER,

first name VARCHAR,

last name VARCHAR] ,

table details [person id INTEGER,

age INTEGER] ;

Integer limit = 18 ;

ResultSet rs = using c query {
SELECT age, gender, last name

FROM person , details

WHERE person.person id = details.person id

AND details.age > limit } ;

Integer = rs.getInteger("age");

String gender = rs.getString("gender");

boolean b ;

b = table (age > 40 : T * ,

gender == "M" : T F) ;

}
}

• natural syntax
• semantic analysis
• composable extensions

2

Composing language specifications

I It should “just work”.

I Many formalisms naturally compose.

I Take the set union of the component sets.
I context free grammars

I attribute grammars

I term rewriting systems

I But certain desirable properties may not hold.

3

Context free grammars

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I ∪ of sets of nonterminals, terminals, productions

I Composition of all is an context free grammar.

I Is it ambiguous, useful for deterministic (LR) parsing?

I conflictFree(GH ∪ G 1
E) holds

I conflictFree(GH ∪ G 2
E) holds

I conflictFree(GH ∪ G i
E) holds

I conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E) may not hold

4

Context free grammars

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I ∪ of sets of nonterminals, terminals, productions

I Composition of all is an context free grammar.

I Is it ambiguous, useful for deterministic (LR) parsing?

I conflictFree(GH ∪ G 1
E) holds

I conflictFree(GH ∪ G 2
E) holds

I conflictFree(GH ∪ G i
E) holds

I conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E) may not hold

4

Context free grammars

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I ∪ of sets of nonterminals, terminals, productions

I Composition of all is an context free grammar.

I Is it ambiguous, useful for deterministic (LR) parsing?

I conflictFree(GH ∪ G 1
E) holds

I conflictFree(GH ∪ G 2
E) holds

I conflictFree(GH ∪ G i
E) holds

I conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E) may not hold

4

Context free grammars

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I ∪ of sets of nonterminals, terminals, productions

I Composition of all is an context free grammar.

I Is it ambiguous, useful for deterministic (LR) parsing?

I conflictFree(GH ∪ G 1
E) holds

I conflictFree(GH ∪ G 2
E) holds

I conflictFree(GH ∪ G i
E) holds

I conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E) may not hold

4

Context free grammars

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I ∪ of sets of nonterminals, terminals, productions

I Composition of all is an context free grammar.

I Is it ambiguous, useful for deterministic (LR) parsing?

I conflictFree(GH ∪ G 1
E) holds

I conflictFree(GH ∪ G 2
E) holds

I conflictFree(GH ∪ G i
E) holds

I conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E) may not hold

4

Attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I ∪ of sets of attributes, attribute equations, occurs-on
declarations

I Composition of all is an attribute grammar.

I Completeness: ∀ production, ∀ attribute, ∃ an equation

I complete(AGH ∪ AG 1
E) holds

I complete(AGH ∪ AG 2
E) holds

I complete(AGH ∪ AG i
E) holds

I complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E) may not hold

I similarly for non-circularity of the AG

5

Attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I ∪ of sets of attributes, attribute equations, occurs-on
declarations

I Composition of all is an attribute grammar.

I Completeness: ∀ production, ∀ attribute, ∃ an equation

I complete(AGH ∪ AG 1
E) holds

I complete(AGH ∪ AG 2
E) holds

I complete(AGH ∪ AG i
E) holds

I complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E) may not hold

I similarly for non-circularity of the AG

5

Attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I ∪ of sets of attributes, attribute equations, occurs-on
declarations

I Composition of all is an attribute grammar.

I Completeness: ∀ production, ∀ attribute, ∃ an equation

I complete(AGH ∪ AG 1
E) holds

I complete(AGH ∪ AG 2
E) holds

I complete(AGH ∪ AG i
E) holds

I complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E) may not hold

I similarly for non-circularity of the AG

5

Attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I ∪ of sets of attributes, attribute equations, occurs-on
declarations

I Composition of all is an attribute grammar.

I Completeness: ∀ production, ∀ attribute, ∃ an equation

I complete(AGH ∪ AG 1
E) holds

I complete(AGH ∪ AG 2
E) holds

I complete(AGH ∪ AG i
E) holds

I complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E) may not hold

I similarly for non-circularity of the AG

5

Attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I ∪ of sets of attributes, attribute equations, occurs-on
declarations

I Composition of all is an attribute grammar.

I Completeness: ∀ production, ∀ attribute, ∃ an equation

I complete(AGH ∪ AG 1
E) holds

I complete(AGH ∪ AG 2
E) holds

I complete(AGH ∪ AG i
E) holds

I complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E) may not hold

I similarly for non-circularity of the AG

5

Attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I ∪ of sets of attributes, attribute equations, occurs-on
declarations

I Composition of all is an attribute grammar.

I Completeness: ∀ production, ∀ attribute, ∃ an equation

I complete(AGH ∪ AG 1
E) holds

I complete(AGH ∪ AG 2
E) holds

I complete(AGH ∪ AG i
E) holds

I complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E) may not hold

I similarly for non-circularity of the AG

5

Term rewriting systems

... similarly ...

6

So, they easily compose.

The non-expert program is happy, maybe.

But what assurances can we provide that the composition will
be a “good” one?

7

Detecting problems, ensuring composition

When can some analysis of the language specification be
applied?
When ...

1. the host language is developed ?

2. a language extensions is developed ?

3. when the host and extensions are composed ?

4. when the resulting language tools is run ?

8

When to analyze

9

Libraries, and modular type checking

I Libraries “just work”

I Type checking is done by the library writer, modularly.

I Language extensions should be like libraries, composition
of “verified” extensions should “just work.”

10

Modular determinism analysis for grammars, 2009

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I isComposable(GH ,G 1
E) ∧ conflictFree(GH ∪ G 1

E) holds

I isComposable(GH ,G 2
E) ∧ conflictFree(GH ∪ G 2

E) holds

I isComposable(GH ,G i
E) ∧ conflictFree(GH ∪ G i

E) holds

I these imply conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ...) holds

I (∀i ∈ [1, n].isComposable(GH ,G i
E) ∧

conflictFree(GH ∪ {G i
E)})

=⇒ conflictFree(GH ∪
{

G 1
E , . . . ,G n

E

}
)

I Some restrictions to extension introduced syntax apply, of
course.

11

Modular determinism analysis for grammars, 2009

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I isComposable(GH ,G 1
E) ∧ conflictFree(GH ∪ G 1

E) holds

I isComposable(GH ,G 2
E) ∧ conflictFree(GH ∪ G 2

E) holds

I isComposable(GH ,G i
E) ∧ conflictFree(GH ∪ G i

E) holds

I these imply conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ...) holds

I (∀i ∈ [1, n].isComposable(GH ,G i
E) ∧

conflictFree(GH ∪ {G i
E)})

=⇒ conflictFree(GH ∪
{

G 1
E , . . . ,G n

E

}
)

I Some restrictions to extension introduced syntax apply, of
course.

11

Modular determinism analysis for grammars, 2009

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I isComposable(GH ,G 1
E) ∧ conflictFree(GH ∪ G 1

E) holds

I isComposable(GH ,G 2
E) ∧ conflictFree(GH ∪ G 2

E) holds

I isComposable(GH ,G i
E) ∧ conflictFree(GH ∪ G i

E) holds

I these imply conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ...) holds

I (∀i ∈ [1, n].isComposable(GH ,G i
E) ∧

conflictFree(GH ∪ {G i
E)})

=⇒ conflictFree(GH ∪
{

G 1
E , . . . ,G n

E

}
)

I Some restrictions to extension introduced syntax apply, of
course.

11

Modular determinism analysis for grammars, 2009

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I isComposable(GH ,G 1
E) ∧ conflictFree(GH ∪ G 1

E) holds

I isComposable(GH ,G 2
E) ∧ conflictFree(GH ∪ G 2

E) holds

I isComposable(GH ,G i
E) ∧ conflictFree(GH ∪ G i

E) holds

I these imply conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ...) holds

I (∀i ∈ [1, n].isComposable(GH ,G i
E) ∧

conflictFree(GH ∪ {G i
E)})

=⇒ conflictFree(GH ∪
{

G 1
E , . . . ,G n

E

}
)

I Some restrictions to extension introduced syntax apply, of
course.

11

Modular determinism analysis for grammars, 2009

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I isComposable(GH ,G 1
E) ∧ conflictFree(GH ∪ G 1

E) holds

I isComposable(GH ,G 2
E) ∧ conflictFree(GH ∪ G 2

E) holds

I isComposable(GH ,G i
E) ∧ conflictFree(GH ∪ G i

E) holds

I these imply conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ...) holds

I (∀i ∈ [1, n].isComposable(GH ,G i
E) ∧

conflictFree(GH ∪ {G i
E)})

=⇒ conflictFree(GH ∪
{

G 1
E , . . . ,G n

E

}
)

I Some restrictions to extension introduced syntax apply, of
course.

11

Modular determinism analysis for grammars, 2009

GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E

I isComposable(GH ,G 1
E) ∧ conflictFree(GH ∪ G 1

E) holds

I isComposable(GH ,G 2
E) ∧ conflictFree(GH ∪ G 2

E) holds

I isComposable(GH ,G i
E) ∧ conflictFree(GH ∪ G i

E) holds

I these imply conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ...) holds

I (∀i ∈ [1, n].isComposable(GH ,G i
E) ∧

conflictFree(GH ∪ {G i
E)})

=⇒ conflictFree(GH ∪
{

G 1
E , . . . ,G n

E

}
)

I Some restrictions to extension introduced syntax apply, of
course.

11

Modular completeness analysis for attribute

grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).
I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

12

Modular completeness analysis for attribute

grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).
I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

12

Modular completeness analysis for attribute

grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).
I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

12

Modular completeness analysis for attribute

grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).
I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

12

Modular completeness analysis for attribute

grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).
I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

12

Modular completeness analysis for attribute

grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).

I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

12

Modular completeness analysis for attribute

grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).
I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

12

The details ...

12

Attribute grammars (AGs), quick refresher

AGs add two things to context free grammars

1. attributes: named values, with specified types.
I These “decorate” nonterminals.

I Synthesized attributes propagate information up the tree.

I Inherited attributes ... down the tree.

I e.g. errors :: [String] occurs on Expr

I e.g. cCodeTrans :: String occurs on Stmt ...

I e.g. type :: TypeRep

I e.g. env :: [Map<String, Declaration>]

13

Attribute grammars (AGs), quick refresher

AGs add two things to context free grammars
2. attribute equations, associated with productions

I These assign values to attributes on nodes referenced in
the production.

I For example:

production add

e::Expr ::= l::Expr ’+’ r::Expr

{

e.errors = l.errors ++ r.errors ++

if (... addition no defined on l.type ...)

then ["Error on addition..."]

else [] ;

e.type = resolve (l.type, r.type) ;

l.env = e.env ;

r.env = e.env ;

}
14

Extensibility: safe composability

Host

Ext 1

Ext 2

Problem

New attributes
N

e
w

 p
ro

d
u
ct

io
n
s

independent
extensions

15

Extensibility: safe composability

Host

for

code
gen

New attributes
N

e
w

 p
ro

d
u
ct

io
n
s

independent
extensions

16

Forwarding
I A production builds another AST and forwards requests

for undefined attributes to it.
I Language extension productions forward to their

translation in the host language.
I That is, a tree of host language constructs.

I Forwarding make completeness possible, but doesn’t
ensure it.

production for_loop

s::Stmt ::= var::Name lower::Expr upper:Expr body::Stmt

{ s.errors = ... ;

forwards to seq (assign (var, lower) ,

while (lessThanEqual (var, upper),

seq (body ,

assign (var,

plus (var, one)))))

17

Modular completeness analysis
I The analysis modComplete is defined as follows:

modComplete(AGH ,AGE) ,
noOrphanOccursOn(AGH ,AGE) ∧
noOrphanAttrEqs(AGH ,AGE) ∧
noOrphanProds(AGH ,AGE) ∧
synComplete(AGH ,AGE) ∧
modularFlowTypes(flowTypes(AGH),

flowTypes(AGH ∪ AGE)) ∧
inhComplete(AGH ,AGE , flowTypes(AGH ∪ AGE))

I Some “structural” requirements, some flow-type
requirements

I Silver’s module system prevents duplicate nonterminal,
attribute, production declarations.

18

No orphan occurs on declarations

“an AG declares a occurs on nt only if it declares or exports
a or nt”

noOrphanOccursOn(AGH ,AGE)

holds if and only if each occurs-on declaration
“attribute a occurs on nt” in AGH ∪ AGE

is exported by the grammar declaring a or the grammar
declaring nt.

19

No orphan attribute equations

“an AG provides an equation n.a=e on p with l.h.s.
nonterminal nt only if it declares/exports the production p or
the occurs-on declaration a occurs on nt.”

noOrphanAttrEqs(AGH ,AGE)

holds if and only if each equation n.a = e in a production
p is exported by the grammar declaring the (non-aspect)
production p or the grammar declaring the occurs-on
declaration “attribute a occurs on nt” (where n has
type nt.)

20

No orphan production declarations

“Productions in extensions that build host language
nonterminals must forward.”

noOrphanProds(AGH ,AGE)

holds if and only if for each production declaration p in
AGH ∪ AGE with left hand side nonterminal nt, the
production p is either exported by the grammar declaring
nt, or p forwards.

21

Completeness of synthesized equations

“A production forwards or has equations for all its attributes,
these may be on aspect productions.”

synComplete(AGH ,AGE)

holds if and only if for each occurs-on declaration
attribute a occurs on nt, and for each non-forwarding
production p that constructs nt, there exists a rule
defining the synthesized equation p : x .a, where x is the
left hand side of the production.

22

Flow Types

I A flow-type captures how information flow between
attributes.

I For a non-terminal, it maps synthesized attributes to the
inherited attributes on which it depends.

I ftnt :: As → 2AI

I e.g. ftExpr (type) = {env}

23

Modularity of flow types

“Host language attributes on host language nonterminals do
not depend on extension-declared inherited attributes.”

modularFlowTypes(flowTypes(AGH),
flowTypes(AGH ∪ AGE))

holds if and only if for each ftHnt ∈ flowTypes(AGH) and
ftH∪E

nt ∈ flowTypes(AGH ∪ AGE),
for all synthesized attributes s and for all nonterminals nt
such that attribute s occurs on nt is declared in AGH ,
ftH∪E

nt (s) ⊆ ftHnt(s).

24

Effective completeness of inherited equations

“All inherited attributes required to compute a synthesized
attribute on a node have defining equations.”

inhComplete(AGH ,AGE , flowTypes(AGH ∪ AGE))

holds if and only if for every production p in AGH ∪ AGE

and for every access to a synthesized attribute n.s in an
expression within p (where n has type nt,) and for each
inherited attribute i ∈ ftnt(s), there exists an equation
n.i = e for p.

25

A generalization

I Silver does not identify “host” and “extensions.”

I The analysis works on import grammar relationships.

I A grammar A that imports B is seen as an extension to B.

I So, Silver libraries are hosts, in essence.

26

Evaluation
I Q: Are these restrictions too overbearing?

A1: No, they are turned on by default.
A2: No, except for reference attributes.

I Applied to Silver compiler’s Silver specs
1. We found a few bugs.
2. We moved some declarations to new grammars.

These were bad design “smells.”
3. We extended Silver

I Annotations allowing host language to be modularized
without respect to the rules.
These treat the “whole” host language, spread across
many modules, as one for the analysis.

I Default attributes.

I Reference attributes - rather severe restrictions.
All inherited attributes must be provided and no more can
be added.

27

Modular circularity analysis

I Analysis extends to check for no cycles, modularly.

I Instead of a flow type for each non-terminal, there is a set
of flow-graphs for each.

I Analysis ensures no new patterns of information flow are
added by an extension.

28

Lessons learned ?

I For extensible language frameworks
I Analysis - modular or don’t bother?

I But my undergrads like static completeness detection.

29

Some questions ...

29

Some questions ... what to call these?

I We’ve called this a “modular” analysis.

I Maybe “static composition analysis”
I analysis that happens before composition

I As opposed to “dynamic composition analysis”
I analysis that happens during composition

I But “static” and “dynamic” suggest 2 points in time
I before and during run-time

I We have more than 2 interesting points in time.
I 1. host development, 2. extension development,

3. composition, 4. translation, 5. execution

30

Thanks for your attention.

Questions?

http://melt.cs.umn.edu

evw@cs.umn.edu

31

http://melt.cs.umn.edu
evw@cs.umn.edu

