B

(*) all the non-CS people

Warning: contains

%

=)
——

—

Java

Teaching Program
Generation to the Masses™

Ulrik Pagh Schultz, SDU UAS, University of Southern Denmark




Audience

Overview
I. Context: the non-CS (the masses), who are they and what do they know?

2. Problem: what is hard for them to learn about program generation?

3. Solution: obvious motivation, modelling as abstraction, internal DSL stepping stone, ...

. Result: a few concrete examples & input from the audience

Dynamically added as we speak. Input from the audience added here...

Ulrik Pagh Schultz, SDU UAS 19/05/2019



Context: To be [CS] or not to be [CS]

Computer Scientist Roboticist Software Engineer (this talk)
= Knows programming, = Knows development, = Knows (popular) OO, large-
language theory, and v conrol SCale SW development.
GPL compilers. embodiment. reuse, projects, and enough
making DSLs than full- eneration for artifacts -
9 ' = Program generation (DSLs)

blown compllers. abstractions for . -
. complexity. as a way to maintain
» Statemachine: reqular

ol o uto » Sigfemachine: model. productivity (but at a cost)
computation, ... embedded confroller. = Statemachine: DSL?2

Scientific computing. Not a comprehensive list. ...

Audience

Ulrik Pagh Schultz, SDU UAS 19/05/2019




Audience

Problem [1/2]: Abstraction Adversity

Students:

= Modelling reduced to a simple “code illustration activity”
= Here's the new syntax — same as the old syntax

= |ayered execution, interpretation, and code generation
Not just students:

=  Abstraction as a way of solving problems at a new level

= Designing good languages

Ulrik Pagh Schultz, SDU UAS

19/05/2019



Problem [2/2]: Constraining Complexity

= There: going from text to model
= _.and back again: from model to (high-level) code
= Scoping and type checking: intuitive understanding versus operational knowledge

= Validation of DSL properties: brave new world

O
O
-
Q2
O
2
<

Ulrik Pagh Schultz, SDU UAS 19/05/2019




Non-Problems: Productive DSL Development

= |DE support (completion, hovering)

= Programming with a language Xte
workbench (once the concepts

are in place)

= concrete example: xtext grammar
language, xtend as swiss army knife
language

O
O
-

Q2

O
2

<

Ulrik Pagh Schultz, SDU UAS 19/05/2019




Solutions [1/3]: Setting the stage
| | A310 | A320 | A340 |

Obvious Motivation:

= Easy: systems are
difficult to program;
repetitive code; DSLs
are everywhere

= Hard: dated
examples do not
motivate, Java is
already old and

boring

digital 77
units
size in M 4 10 20

errors per  hun-  dozens <10

100K

dreds

A340, auto-generated code
fly-by-wire: 70%
automatic flight control: 70%
display computer: 50%

warning and maintenance: 40%

Audience

Ulrik Pagh Schultz, SDU UAS

19/05/2019



Solutions [1/3]: Setting the stage

Modelling as Abstfraction:

= Easy: metamodeling is
new and exotic and
yet known territory;
push in the right
/ direction

= Hard: what does it
really mean, where is
the code®@

Audience

Ulrik Pagh Schultz, SDU UAS 19/05/2019




Audience

Solutions [2/3]:
Bridging the gap

Internal DSL Stepping Stone:

= Easy: everything’s
included, easy to open the
hood (metamodel
abstraction, syntax and
semantics, interpretation
and code generation)

= Hard: DSL vs fluent
interface vs bunch of
classes

Ulrik Pagh Schultz, SDU UAS

19/05/2019



Audience

Solutions [2/3]:
Bridging the gap

Internal DSL Stepping Stone:

= Easy: everything’s
included, easy to open the
hood (metamodel
abstraction, syntax and
semantics, interpretation
and code generation)

= Hard: DSL vs fluent
interface vs bunch of
classes

Ulrik Pagh Schultz, SDU UAS

19/05/2019



O
O
-

Q2

O
2

<

Solutions [2/3]:
Bridging the gap

Internal DSL Stepping Stone:

= Eaqsy: everything'’s
included, easy to open the
hood (metamodel
abstraction, syntax and
semantics, interpretation
and code generation)

= Hard: DSL vs fluent
interface vs bunch of
classes

public class DataFormatter {

private List<FormatElement> model;

public String format(Object...inputs) { /* 777 */ }

public static class Builder {
private List<FormatElement> model = new ArraylList<();
public Builder t(String text) { /* 77?7 */ }
public Builder object(int index) { /* ?7? */ }
public Builder day(int index) { /* 7?7 */ }
public Builder month(int index) { /* 7?? */ }
public Builder year(int index) { /* ??? */ }
public DataFormatter end() { /* 77?7 */ }

DataFormatter f1 = DataFormatter.build().t("Course ").object(®).
t(" had start date: ").day(1).t("/").month(1).t("-").year(1).
endQ);
Calendar mdsd = new GregorianCalendar(2019, 6, 2);
System.out.println(fl.format("MDSD" ,mdsd));

Formatting is not difficult enough, do something more, graphics, web page. Formatting
is contrived. External DSL that generates program as introductory example even before
the internal DSL (conceptualization is key). Abstract data types as the abstraction.
Deep embedded versus shallow embedding. Builder pattern obscures things.

Ulrik Pagh Schultz, SDU UAS

19/05/2019




Solutions [2/3 — 3/3]:

protected void build(Q) { protected void build() {

entity("Person™). integerState("power™);

attribute(String.class, "name™). state("PONER_OFF").

attribute(Integer.class,"age"). transition("PLUS").to("PONER_ON").setState("power" ,MIN_POWER).
entity("Course™). state("PONER_ON").

attribute(String.class,"title"). transition("PLUS").to("MAX_POWER") .whenEq("power" ,MAX_POWER).
entity("Student").sub("Person™). incState("power",1).otherwise().

attribute(Integer.class,"1d"). transition("MINUS™).to("PONER_OFF").whenEq("power" ,MIN_POWER).

relation_n_n("follows","Course","enrolled"). incState("power”,-1).otherwise().
entity("Teacher").sub("Person™). state("MAX_POWER™).

relation_n_1("teaches","Course","taught_by") transition("MINUS™).to("PONER_ON").setState("power" ,MAX_POWER)

}

Audience

Ulrik Pagh Schultz, SDU UAS 19/05/2019



Solutions [2/3 — 3/3]:

entity Person {
attribute name String
attribute age Integer
require age >= 0 && age<l120
}
entity Student: Person {
attribute id Integer
relation follows *Course inverse *enrolled
require age>17
}
entity Course {
attribute title String
}
entity Teacher: Person {
relation teaches Course inverse taught_by

}

Audience

Ulrik Pagh Schultz, SDU UAS

machine CookingHood
var power = 0
var limit = 6
events PLUS, MINUS
state OFF
PLUS to ON set power = 1
state ON
MINUS [ power = 1 ] to OFF set power = 0
else set power -= 1
PLUS [ limit = power ] to MAX
else to MAX set power += 1
state MAX
MINUS to ON

19/05/2019



Audience

Solutions [3/3]: Taking the leap

External DSL Liberator

Easy: the joy of automatic
parser generation, the
simplicity of templates

Hard: to LL-parse or not to
LL-parse, connecting the
code generation dots

Hors categorie: language
design




Solutions [3/3]: Taking the leap

Analysis Baby Steps:

= Easy: model
validation, scope
for DSLs, IDE

suggestions

= Hard: the rest - and
understanding
your limits

O
O
-
Q2
O
2
<

Ulrik Pagh Schultz, SDU UAS

override getScope(EObject context, EReference reference) {

}

// Use of attribute or relation names in expressions
if (context instanceof Variable && reference==Literals.VARIABLE VAR) {
val seen = new HashSet<Entity>
var entity = EcoreUtil2.getContainerOfType(context,Entity)
val candidates = new ArrayList<NamedMember>
while(entity!==null) {
if (seen.contains(entity)) return super.getScope(context, reference)
seen.add(entity)
candidates.addAll (entity.members.filter (NamedMember))
entity = entity.inherits
}

return Scopes.scopeFor(candidates)

}

return super.getScope(context, reference)

19/05/2019



Solutions [3/3]: Taking the leap

» DSL
Release the Engineer: Gode of Appication of Applicasion
. . Reference Implementation H
= Easy: basic model-driven software ¥ Trans-
development : formaetions
i al se H
= Hard: making DSLs that the non- ‘ ] individual
CS will actually use vidus Code |}
= Hors de categorie: systematic W c‘:’ G{cm'c Sohematic Platform
approach to DSL engineering 1 Rog:tdlt:w ﬂeg:ﬂﬂ““,
..... —_— —————p
i uses creates

O
O
-

Q2

O
2

<

Ulrik Pagh Schultz, SDU UAS 19/05/2019




Audience

Results: What the non-CS can do

= The software engineer. mixed range
of results, some nice design and
functionality

= |OT DSLs: mostly limited functionality
but seeding a new way of thinking

= Microservice modeling

= (The robotics student: ugly DSL that
makes the robot do something
useful.)

Ulrik Pagh Schultz, SDU UAS

template GENERIC_GET (path,
type)
/{path}
GET
return {type}

template GET_BY(path, type,
name, returnType)
implements
GENERIC_GET (path,
returnType)
/{path}/{{type} {name}}
GET

return {returnType}

Niclas Mglby  Niels Heltner

microservice
PET_STORE_SERVICE @
localhost :5000
implements GET_BY(pet,
int, id, stringl[])

microservice
PET_STORE_SERVICE @
localhost:5000
/pet
GET
return stringl[]
/pet/{int id}
GET
return stringl[]

19/05/2019



Results: anything to do for WG 2.11%¢

= Remember to talk about teaching every once in a while
= Start humble: index (good) resources on teaching program generation

= Realistic longer-term goal?

O
O
-
Q2
O
2
<

Ulrik Pagh Schultz, SDU UAS 19/05/2019




