
Jeremy Gibbons

WG2.11#19

Salem

Asymmetric
Numeral
Systems

ANS 2

1. Coding

• Huffman coding (HC)

efficient; optimally effective for bit-sequence-per-symbol

• arithmetic coding (AC)

Shannon-optimal (fractional entropy); but computationally expensive

• asymmetric numeral systems (ANS)

efficiency of Huffman, effectiveness of arithmetic coding

• applications of streaming (another story)

ANS introduced by Jarek Duda (2006–2013).

Now: Facebook (Zstandard), Apple (LZFSE), Google (Draco), Dropbox (DivANS). . .

ANS 3

2. Intervals

Pairs of rationals

type Interval = (Rational, Rational)

with operations

unit = (0, 1)
weight (l, r) x = l + (r � l)⇥ x

narrow i (p, q) = (weight i p, weight i q)
scale (l, r) x = (x � l) / (r � l)
widen i (p, q) = (scale i p, scale i q)

so that narrow and unit form a monoid, and inverse relationships:

weight i x 2 i () x 2 unit

weight i x = y () scale i y = x

narrow i j = k () widen i k = j

ANS 4

3. Models

Given

counts :: [(Symbol, Integer)]

get

encodeSym :: Symbol ! Interval

decodeSym :: Rational ! Symbol

such that

decodeSym x = s () x 2 encodeSym s

Eg alphabet {‘a’, ‘b’, ‘c’} with counts 2, 3, 5 encoded as (0, 1/5), (1/5, 1/2), and (1/2, 1).

ANS 5

4. Arithmetic coding

encode1 :: [Symbol]! Rational

encode1 = pick � foldl estep1 unit where
estep1 :: Interval ! Symbol ! Interval

estep1 i s = narrow i (encodeSym s)

decode1 :: Rational ! [Symbol]
decode1 = unfoldr dstep1 where

dstep1 :: Rational ! Maybe (Symbol, Rational)
dstep1 x = let s = decodeSym x in Just (s, scale (encodeSym s) x)

where pick :: Interval ! Rational satisfies pick i 2 i. Eg, with pick = fst:

(0, 1) ‘a’�! (0, 1/5) ‘b’�! (1/25, 1/10) ‘c’�! (7/100, 1/10) 7/100

ANS 6

5. Trading in bits

Let pick = fromBits � toBits :: Interval ! Rational, where

toBits :: Interval ! [Bool]
fromBits :: [Bool]! Rational

Obvious thing: let toBits i pick shortest binary fraction in i, and fromBits evaluate
this fraction. But this can’t be streamed.

Instead, toBits i yields bit sequence bs such that bs ++ [True] is shortest:

toBits = unfoldr nextBit where
nextBit (l, r) | r 6 1/2 = Just (False, (0, 1/2) widen (l, r))

| 1/2 6 l = Just (True, (1/2, 1) widen (l, r))
| otherwise = Nothing

fromBits = foldr pack (1/2) where pack b x = ((if b then 1 else 0) + x) / 2

Now pick is a hylomorphism. Also, toBits yields a finite sequence.

ANS 7

6. Streaming encoding

Move fromBits from encoding to decoding:

encodeBits :: [Symbol]! [Bool]
encodeBits = toBits � foldl estep1 unit

decodeBits :: [Bool]! [Symbol]
decodeBits = unfoldr dstep1 � fromBits

Both of these can be streamed: alternately producing and consuming.

ANS 8

7. Towards ANS—fission and fusion

encode1

= [[definition; go back to pick = fst]]
fst � foldl estep1 unit

= [[map fusion for foldl, backwards]]
fst � foldl narrow unit �map encodeSym

= [[narrow is associative]]
fst � foldr narrow unit �map encodeSym

= [[fusion for foldr]]
foldr weight 0 �map encodeSym

= [[map fusion; let estep2 s x = weight (encodeSym s) x]]
foldr estep2 0

so let encode2 = foldr estep2 0.

ANS 9

8. Unfoldr–foldr theorem

Inverting a fold:

unfoldr g (foldr f e xs) = xs (= g (f x z) = Just (x, z) ^ g e = Nothing

Allowing junk:

(9ys . unfoldr g (foldr f e xs) = xs ++ ys)(= g (f x z) = Just (x, z)

With invariant:

unfoldr g (foldr f e xs) = xs (= ((g (f x z) = Just (x, z))(= p z) ^
((g e = Nothing) (= p e)

where invariant p of foldr f e and unfoldr g is such that

p (f x z)(= p z

p z
0 (= p z ^ g z = Just (x, z

0)

ANS 10

9. Correctness of decoding

dstep1 (estep2 s z)
= [[estep2]]

dstep1 (weight (encodeSym s) z)
= [[dstep1; let s

0 = decodeSym (weight (encodeSym s) z)]]
Just (s

0, scale (encodeSym s
0) (weight (encodeSym s) z))

= [[s
0 = s (see next slide)]]

Just (s, scale (encodeSym s) (weight (encodeSym s) z))
= [[scale i �weight i = id]]

Just (s, z)

ANS 11

9. Correctness of decoding (continued)

Indeed, s
0 = s:

decodeSym (weight (encodeSym s) z) = s

() [[central property]]
weight (encodeSym s) z 2 encodeSym s

() [[property of weight]]
z 2 unit

and z 2 unit is an invariant. Therefore

take (length xs) (decode1 (encode2 xs)) = xs

for all finite xs.

ANS 12

10. From fractions to integers

AC encodes longer messages as more precise fractions.
In contrast, ANS makes larger integers.

count :: Symbol ! Integer

cumul :: Symbol ! Integer -- sum of counts of earlier symbols
total :: Integer -- sum of counts of all symbols
find :: Integer ! Symbol

such that

find z = s () cumul s 6 z < cumul s + count s

for 0 6 z < total.

ANS 13

11. Asymmetric encoding: the idea

• text encoded as integer z, with log2 z bits of information

• next symbol s has probability p = count s / total, so requires log2 (1/p) bits

• so map z, s to z
0 ' z ⇥ total / count s—but do so invertibly

• with z
0 = (z div count s)⇥ total, can undo the known multiplication:

z div count s = z
0 div total

• what about s? headroom! with z
0 = (z div count s)⇥ total + cumul s,

s = find (cumul s) = find (z
0 mod total)

• what about z? with z
0 = (z div count s)⇥ total + cumul s + z mod count s,

z mod count s = z
0 mod total � cumul s

ANS 14

12. ANS, pictorially

The start of the coding table for alphabet ’a’, ’b’, ’c’ with counts 2, 3, 5:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

’a’ • • • •
’b’ • • • • • •
’c’ • • • • • • •

• integers 0 . . distributed across the alphabet, in proportion to counts

• encoding symbol s with current accumulator x yields the position of the xth
blob in row s as the new accumulator x

0

ANS 15

13. Essence of ANS encoding and decoding

encode3 :: [Symbol]! Integer

encode3 = foldr estep3 0

estep3 :: Symbol ! Integer ! Integer

estep3 s z = let (q, r) = z divMod count s in q ⇥ total + cumul s + r

decode3 :: Integer ! [Symbol]
decode3 = unfoldr dstep3

dstep3 :: Integer ! Maybe (Symbol, Integer)
dstep3 z = let (q, r) = z divMod total

s = find r

in Just (s, count s ⇥ q + r � cumul s)

Correctness argument as before. But note that encoding is right-to-left.

ANS 16

14. Variation

Correctness does not depend on starting value: can pick any l instead of 0.

Also, estep3 strictly increasing on z > 0, and dstep3 strictly decreasing, so we
know when to stop:

encode4 :: [Symbol]! Integer

encode4 = foldr estep3 l

decode4 :: Integer ! [Symbol]
decode4 = unfoldr dstep4

dstep4 :: Integer ! Maybe (Symbol, Integer)
dstep4 z = if z == l then Nothing else dstep3 z

and we have

decode4 (encode4 xs) = xs

for all finite xs, but this time without junk.

ANS 17

15. Bounded precision

Fix base b and lower bound l. Represent accumulator z as pair (x, ys) such that:

• remainder ys is a list of digits in base b

• window x satisfies l 6 x < u for upper bound u = l ⇥ b

under abstraction z = foldl inject x ys where

inject x y = x ⇥ b + y and extract x = x divMod b

Eg with b = 10 and l = 100, pair (123, [4, 5, 6]) represents 123456.

type Number = (Integer, [Integer])

Note “you can’t miss it” properties:

inject x y < u () x < l

l 6 fst (extract x)() u 6 x

Want b, l powers of two, and u a single word. Also nice if l mod total = 0.

ANS 18

16. Encoding

Maintain window in range.

econsume5 :: [Symbol]! Number

econsume5 = foldr estep5 (l, [])

estep5 :: Symbol ! Number ! Number

estep5 s (x, ys) = let (x
0, ys

0) = enorm5 s (x, ys) in (estep3 s x
0, ys

0)

enorm5 :: Symbol ! Number ! Number

enorm5 s (x, ys) = if estep3 s x < u

then (x, ys)
else let (q, r) = extract x in enorm5 s (q, r : ys)

Pre-normalize before consuming symbol. Eg with b = 10, l = 100:

(340, [3]) ‘a’ � (68, [3]) norm � (683, []) ‘b’ � (205, []) ‘c’ � (100, [])

ANS 19

17. Decoding

dproduce5 :: Number ! [Symbol]
dproduce5 = unfoldr dstep5

dstep5 :: Number ! Maybe (Symbol, Number)
dstep5 (x, ys) = let Just (s, x

0) = dstep3 x

(x
00, ys

00) = dnorm5 (x
0, ys)

in if x
00 > l then Just (s, (x

00, ys
00)) else Nothing

dnorm5 :: Number ! Number -- dnorm5 (enorm5 s (x, ys)) = (x, ys) when l 6 x < u

dnorm5 (x, y : ys) = if x < l then dnorm5 (inject x y, ys) else (x, y : ys)
dnorm5 (x, []) = (x, [])

Decoding is symmetric to encoding: renormalize after emitting a symbol.

(340, [3]) ‘a’�! (68, [3]) norm�! (683, []) ‘b’�! (205, []) ‘c’�! (100, [])

Correctness again as before (no junk; invariant l 6 x < u).

ANS 20

18. Trading in sequences

Flush out the last few digits in the Number when encoding complete:

eflush5 :: Number ! [Integer]
eflush5 (0, ys) = ys

eflush5 (x, ys) = let (x
0, y) = extract x in eflush5 (x

0, y : ys)

encode5 :: [Symbol]! [Integer]
encode5 = eflush5 � econsume5

Conversely, populate initial Number from first few digits when decoding:

dstart5 :: [Integer]! Number

dstart5 ys = dnorm5 (0, ys)

decode5 :: [Integer]! [Symbol]
decode5 = dproduce5 � dstart5

Note that dstart5 (eflush5 x) = x (= l 6 x < u.

ANS 21

19. Fast loops

encode :: [Symbol]! [Integer] -- one tight loop
encode = h1 l � reverse where

h1 x (s : ss) = let x
0 = estep3 s x in if x

0 < u then h1 x
0

ss else
let (q, r) = extract x in r : h1 q (s : ss)

h1 x [] = h2 x

h2 x = if x == 0 then [] else let (x
0, y) = extract x in y : h2 x

0

decode :: [Integer]! [Symbol] -- one tight loop
decode = h0 0 � reverse where

h0 x (y : ys) | x < l = h0 (inject x y) ys

h0 x ys = h1 x ys

h1 x ys = let Just (s, x
0) = dstep3 x in h2 s x

0
ys

h2 s x (y : ys) | x < l = h2 s (inject x y) ys

h2 s x ys = if x > l then s : h1 x ys else []

ANS 22

20. But. . .

• AC encoding and decoding are both left-to-right

• so AC can be made adaptive: adjust model with each symbol

• fixed-precision AC is (I believe) equivalent to a quantizing adaptation

• ANS encoding and decoding go in opposite directions

• can’t be so easily made adaptive

• then fixed-precision ANS is a different problem

Comnments welcome! Paper in preparation. . .

