~ e e 4 e N
& - s~ ASsymmetric
i i Numeral
Systems

Yoy
-
R I
L
R e
on

_ <7 P i &
— O e
3 \4‘\ J -'_'-" -.\‘:‘- ,‘
" e :
) i = & 3N L3 sy _LL";“ ¥ L e
% - . 2

Jeremy Gibbons
WG2.11#19
Salem

1. Coding

e Huffman coding (HC)

efficient; optimally effective for bit-sequence-per-symbol

e arithmetic coding (AC)

Shannon-optimal (fractional entropy); but computationally expensive

e asymmetric numeral systems (ANS)

efficiency of Huffman, effectiveness of arithmetic coding
e applications of streaming (another story)

ANS introduced by Jarek Duda (2006-2013).
Now: Facebook (Zstandard), Apple (LZFSE), Google (Draco), Dropbox (DivANS). ..

2. Intervals

Pairs of rationals

type Interval = (Rational, Rational)

with operations

unit =(0,1)

weight (I, r) x =1+ (r—1) xx

narrow i (p,q) = (weight i p,weight i q)
scale (I, r)x =&-D/7((r—1)

wideni (p,q) = (scalei p,scalei q)

so that narrow and unit form a monoid, and inverse relationships:

weight 1 x i1 [T K1 umhit
weightix =y [I _Edaleiy =x
narrow i j =k [I_Ivdenik =]

3. Models

Given

counts :: [(Symbol, Integer)]

get
encodeSym :: Symbol - Interval
decodeSym :: Rational - Symbol
such that

decodeSym x =s [I_kI1[_encodeSym s

Eg alphabet {*a’, ‘b’, ‘c’} with counts 2, 3,5 encoded as (0, /5), (*/5, /), and (*/5,1).

ANS
4. Arithmetic coding

encode; :: [Symbol] - Rational

encode; = pick - foldl estep; unit where
estep, :: Interval - Symbol - Interval
estep, 1 s = narrow i (encodeSym s)

decode; :: Rational - [Symbol]
decode; = unfoldr dstep,; where
dstep, :: Rational - Maybe (Symbol, Rational)
dstep; X = let s = decodeSym x in Just (s, scale (encodeSym s) X)

where pick :: Interval - Rational satisfies pick i [11Eg, with pick = fst:

‘a’ ‘b’ ‘c’
(0,1) — (0,%) —= (5,%0) — (“1100,*10) ~ 1100

5. Trading in bits

Let pick = fromBits - toBits :: Interval - Rational, where

toBits : Interval - [Bool]
fromBits :: [Bool] - Rational

Obvious thing: let toBits i pick shortest binary fraction in i, and fromBits evaluate
this fraction. But this can’t be streamed.

Instead, toBits | yields bit sequence bs such that bs + [True] is shortest:

toBits = unfoldr nextBit where

nextBit (I,r) | r < = Just (False, (0, 5) widen (I, r))
Y, <1 =Just (True, (Y/>,1) widen (1, 1))
otherwise = Nothing

fromBits = foldr pack (*/2) where pack b x = ((if b then 1 else 0) +x) / 2

Now pick is a hylomorphism. Also, toBits yields a finite sequence.

6. Streaming encoding

Move fromBits from encoding to decoding:

encodegiis :: [Symbol] - [Bool]
encodegjts = toBits - foldl estep; unit
decodegits :: [Bool] - [Symbol]
decodegjtis = unfoldr dstep,; o fromBits

Both of these can be streamed: alternately producing and consuming.

7. Towards ANS—fission and fusion

encodeq
= [I definition; go back to pick = fst T]
fst - foldl estep; unit
= [map fusion for foldl, backwards]
fst - foldl narrow unit = map encodeSym
= |[narrow is associative]
fst o foldr narrow unit = map encodeSym
= [[fusion for foldr 1]
foldr weight O = map encodeSym
= [[map fusion; let estep, s x = weight (encodeSym s) x]
foldr estep, O

so let encode, = foldr estep, O.

ANS 9

8. Unfoldr-foldr theorem

Inverting a fold:

unfoldr g (foldr f e xs) = xs [=d(f xz) =Just (X,z) gk = Nothing
Allowing junk:

(Lyd. unfoldr g (foldr f e xs) =xs +Hvys) =g (f xz) =Just (X,2)

With invariant;

unfoldr g (foldr f e xs) = xs [=({g (f xz)=Just (x,z)) [=dz) [1
((ge = Nothing) [=Qde)
where invariant p of foldr f e and unfoldr g is such that
p(fxz) [=dz

pzH- [=dz Cgk = Just (x,zY

ANS
9. Correctness of decoding

dstep, (estep, s z)
= I estepy 1I
dstep; (weight (encodeSym s) z)
= [[dstepy; let s"= decodeSym (weight (encodeSyms) z) Tl
Just (s'scale (encodeSym sY (weight (encodeSym s) z))
= [[s"= s (see next slide) 7]
Just (s, scale (encodeSym s) (weight (encodeSym s) z))
= |[] scalei-weighti=id T]]
Just (s, z)

10

9. Correctness of decoding (continued)

Indeed, s—=s:

decodeSym (weight (encodeSyms) z) =s
[_IJ] central property]

weight (encodeSym s) z [CencodeSym s
LI T[] property of weight]

z [umhit

and z [uhit is an invariant. Therefore
take (length xs) (decode; (encode; xs)) = xs

for all finite xs.

10. From fractions to integers

AC encodes longer messages as more precise fractions.
In contrast, ANS makes larger integers.

count ::Symbol - Integer

cumul :: Symbol - Integer -- sum of counts of earlier symbols
total :: Integer -- sum of counts of all symbols
find :Integer —» Symbol

such that
find z=s [I _Edmuls <z<cumul s+ counts

for O < z < total.

11. Asymmetric encoding: the idea

e text encoded as integer z, with log, z bits of information
e Next symbol s has probability p = count s / total, so requires log, (1/p) bits
e SO Map z,s to z-'[Zk total / count s—but do so invertibly

e with z= (z div count s) x total, can undo the known multiplication:

z div count s = zMdiv total

e what about s? headroom! with z~= (z div count s) x total + cumul s,

s = find (cumul s) = find (z-mod total)

e what about z? with z= (z div count s) x total + cumul s + z mod count s,

z mod count s = zHmod total — cumul s

12. ANS, pictorially

The start of the coding table for alphabet *a”, ’b”, >c” with counts 2, 3, 5:

0] 1 2 3 4) 6 I 8 9 10 11 12 13 14 15 16

umu
0
0

(@)
0
0
0
0
0
0

,C, [_J [_J [J [_J [J [J [_J

e iNtegers O.. distributed across the alphabet, in proportion to counts

e encoding symbol s with current accumulator x yields the position of the xth

blob in row s as the new accumulator x"

ANS
13. Essence of ANS encoding and decoding

encodes :: [Symbol] - Integer
encodez = foldr estep5 O

esteps :: Symbol - Integer - Integer
esteps s z = let (g, r) = zdivMod count s in g % total + cumul s +r

decodes :: Integer - [Symbol]
decodez = unfoldr dstep,

dsteps :: Integer — Maybe (Symbol, Integer)
dstep; z = let (g, r) = z divMod total
s=findr
In Just (s,count s < g+ r —cumul s)

Correctness argument as before. But note that encoding is right-to-left.

15

14. Variation

Correctness does not depend on starting value: can pick any | instead of O.
Also, estep strictly increasing on z > 0, and dsteps strictly decreasing, so we
know when to stop:

encodey :: [Symbol] - Integer

encode, = foldr esteps |

decodey :: Integer — [Symbol]
decode, = unfoldr dstep,

dstep, :: Integer - Maybe (Symbol, Integer)
dstep, z = if z == | then Nothing else dstep; z

and we have
decodes (encodey xS) = Xs

for all finite xs, but this time without junk.

15. Bounded precision

Fix base b and lower bound |I. Represent accumulator z as pair (X, ys) such that:
e remainder ys is a list of digits in base b
e window x satisfies | < x <u for upper boundu =1xDb

under abstraction z = foldl inject x ys where
InNject Xy =xxb+y and extract x = x divMod b

Eg with b =10 and | = 100, pair (123, [4,5,6]) represents 123456.
type Number = (Integer, [Integer])

Note “you can’t miss it” properties:

Inject Xy <u HI'ES
| < fst (extract x) LI 11K x

Want b, | powers of two, and u a single word. Also nice if | mod total = 0.

ANS

16. Encoding

Maintain window In range.

econsumes :: [Symbol] - Number
econsumes = foldr esteps (I,[])

esteps :: Symbol - Number - Number
esteps s (X,ys) = let (x5ysY = enorms s (x,ys) in (esteps s x5'ysY
enorms :: Symbol - Number - Number
enorms s (X,ys) = if estepzsx<u
then (X, ys)
else let (g,r) = extract x inenorms s (g, r :ys)

Pre-normalize before consuming symbol. Eg with b = 10,1 = 100:

340,[31) & (68,131 "2 (683,[1) > (205,[1) > (200,[1)

18

ANS 19

17. Decoding

dproduces :: Number - [Symbol]
dproduces = unfoldr dsteps

dsteps :: Number - Maybe (Symbol, Number)
dsteps (x,ys) = letJust (s,xY) = dsteps x

(x"Hys™y = dnorms (x5lys)
in if x> | then Just (s, (x"2ys'™) else Nothing

dnorms :: Number - Number -- dnorms (enormss (X,ys)) = (X,ys) when| < x<u
dnorms (X,y :ys) = if x <l then dnorms (inject x y, ys) else (X,y :ys)

dnorms (x,[1) =0[D

Decoding is symmetric to encoding: renormalize after emitting a symbol.

(340,[31) = (68,131 "2 (683,[1) = (205,[1) — (100,[1)

Correctness again as before (no junk; invariant | < x <u).

18. Trading In sequences

Flush out the last few digits in the Number when encoding complete:

eflushg :: Number - [Integer]
eflushg (0,ys) = ys
eflushs (x,ys) = let (x5'y) = extract x in eflushs (x5y :ys)

encodes ;. [Symbol] - [Integer]
encodes = eflushg = econsumes
Conversely, populate initial Number from first few digits when decoding:
dstarts :: [Integer] -~ Number
dstarts ys = dnorms (0O, ys)
decodes :: [Integer] - [Symbol]

decodes = dproduceg ° dstarts

Note that dstarts (eflushg x) =x [=1<{x<u.

ANS

19. Fast loops

encode :: [Symbol] - [Integer] -- one tight loop
encode = hp | = reverse where
hi x (s:ss) = let x“= esteps s x in if x“< u then hy x"“5s else
let (g,r) =extract x inr :hy g (s:ss)
hy X [] = hy X
h, x = if x == 0 then [] else let (x5y) = extract x iny : hy, x"
decode :: [Integer] —» [Symbol] -- one tight loop
decode = hg O = reverse where
hox (y:ys) |x<Il=hg(inject xy) ys
ho X ys =hy xys
hi X Vs = let Just (s,xY = dsteps x in ha s x"s
hosx (y:ys) | x<I|=hys (inject xy) ys
ho s X ys =ifx>lthens:hy xyselse[]

21

20. But. ..

e AC encoding and decoding are both left-to-right
e SO AC can be made adaptive: adjust model with each symbol

e fixed-precision AC is (I believe) equivalent to a quantizing adaptation

e ANS encoding and decoding go in opposite directions
e can’t be so easily made adaptive

e then fixed-precision ANS is a different problem

Comnments welcome! Paper in preparation. ..

