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What Do I Do?

Static analysis research
●trying to create a model of all possible program 
behaviors

●mature framework for Java bytecode, less so for 
LLVM bitcode

This talk: two pieces of recent work, on 
Ethereum

●MadMax: detector for gas-related vulnerabilities
●Gigahorse: a decompiler for EVM bytecode (and 
more)
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Secret Sauce: Declarative Specifications

All analyses specified declaratively, in the 
Datalog language

●i.e., logical rules (hundreds of them)
E.g., 
LoopBoundBy(loop, var) ←
InductionVar(i, loop),
!InductionVar(var, loop),
Flows(var, condVar),
Flows(i, condVar),
LoopExitCond(condVar, loop).
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Blockchain and Cryptocurrencies 
Background
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Cryptocoins

Virtual money
●money = something that I believe has value 
because I believe that others believe has value
● no inherent value, only ability to exchange

●usually this collective hallucination 
(“consensus”) starts from a trusted authority

●in cryptocurrencies: decentralized consensus, 
possible without trusted authority
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Cryptography for our Purposes

Two main functions:
● unforgeable signatures, identification
● publication of boxes with locks that only I can open

● an infinite number of boxes, of all possible sizes, can fit other boxes 
inside

“Have” = “Know”
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Blockchain

A decentralized ledger of transactions
● maintained by untrusted peers

Continuously expanding chain of blocks
● longest chain is accepted as valid

Peers collect transactions, try to form new block
● by mining: solving a crypto-puzzle (proof of work)
● reward for solver (“miner”) 

Peers accept the block if transactions consistent
Blocks sign previous ones
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Example Structure
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Ethereum Blockchain

Main novelty: smart contracts
● complete programs, persistently on the blockchain
● accounts managed by smart contracts
● can call into them, starts a transaction

Gas: fee paid for running them 
● translated in Ether (the Ethereum currency)
● bounded/hard coded
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Security Threats
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DAO Hack

contract SimpleDAO { ...
  function withdraw(uint amount) {
    if (credit[msg.sender] >= amount) {
      msg.sender.call.value(amount)();
      credit[msg.sender] -= amount;
} } }
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DAO Hack

contract SimpleDAO { ...
  function withdraw(uint amount) {
    if (credit[msg.sender] >= amount) {
      msg.sender.call.value(amount)();
      credit[msg.sender] -= amount;
} } }

contract Attack {
  ... function() { dao.withdraw(10); } ...
}
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Gigahorse Decompiler

Go to http://contract-library.com 
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EVM Bytecode Decompilation is Hard!

● Ethereum vs. JVM/CIL bytecode
● No data structures, objects, methods or types
● Stack depth can be different under different control flow 

paths
● All control-flow edges (jumps) are variables, not 

constants 
● All functions of a contract are fused in one (jumps 

transfer control)

http://contract-library.com/
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Decompilation: Stratification Points

Original
Bytecode

Whole program
3 address IR

+ CFG

3 address IR
+ function bounds

+ local CFGs

Functional
3-address code

1. Whole contract ctx & flow sensitive analysis

2. Function extraction algorithms

3. Function argument inference
with flow sensitive analysis
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Large-Scale Recursion

BBlock Inputs

BBlock Outputs

CFG

Reachability

BBlock
Summaries
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Heuristics: Functions That Return

         PUSH4 <return>  // return address

         PUSH4 0xFF      // push data

         PUSH4 <foo>     // function address

         JUMP            // jumps to ‘foo’

return:  JUMPDEST 

         ...

         ...

foo:     JUMPDEST             

         POP             // pops data

         JUMP            // jumps to ‘return’  
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Heuristics: Functions That Return

         PUSH4 <return>  // return address

         PUSH4 0xFF      // push data

         PUSH4 <foo>     // function address

         JUMP            // jumps to ‘foo’

return:  JUMPDEST 

         ...

         ...

foo:     JUMPDEST             

         POP             // pops data

         JUMP            // jumps to ‘return’  

Detect flows of
Return addresses
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Heuristics: Finding More Functions
i = 1.

do {

  InFunctioni(block, block)   FunctionEntry← i-1(block).

  InFunctioni(next, func) ←

    InFunctioni(block, func),BlockEdge(block, next),

    !FunctionCalli-1(block, next), !Function_Exit(block).

  FunctionCalli(prev, block), FunctionEntryi(block)  ←

    InFunctioni(block, f1), InFunctioni(block, f2), f1 != f2,

    BlockEdge(prev, block), !FunctionExit(prev), 

    !InFunctioni(prev, f1), !InFunctioni(prev, f2).

  i = i + 1. 

} until fixpoint(FunctionEntry)
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Output IR After Function Arg Inference

private 0xa3b (va1, va2, va3)  (int4, int16)→
   f1 := CONST 0xa4b

   ret := CONST 0x3f

   v1, v2 := CALLPRIVATE(f1, ret, va2)

   r1 := SHA3(va2, va3)

   RETURNPRIVATE va1, r1, v1;

}

private 0xa4b(va1, va2)  (int4, int16)→
...

}
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Implementation

●A few (<5) KLoC of Datalog
●Decompiles 99.9% of entire Ethereum 
blockchain in 2 hours
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MadMax: Gas-Focused Vulnerability 
Detection
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What is MadMax? [OOPSLA'18]

Cutting-edge (exhaustive) static analysis
● Abstract Interpretation, CFA Flow Analysis, memory modeling

Performs analysis directly on the bytecode
● Source code only available for 0.34% of contracts (Etherscan)

Evaluated on the entire Ethereum blockchain
● Found $5B on vulnerable contracts (81% estimated precision)
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Gas-focused vulnerabilities
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Gas Focused Vulnerabilities

● Gas is needed to execute contracts:
● Paid for by the account that calls the smart contract
● Has monetary value - prevents wasting of resources
● If not enough gas is budgeted, transaction is reverted
● Possibly blocking forever due to lack of progress

● Contract susceptible to DoS attacks if 
attacker can cause it to require unbounded 
gas
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Vulnerability 1: Unbounded Mass Ops

contract NaiveBank {

  struct Account {

    address addr;

    uint balance;

  }

  Account accounts[];

  function applyInterest() returns (uint) {

    for (uint i = 0; i < accounts.length; i++) {

      // apply 5 percent interest

      accounts[i].balance = accounts[i].balance * 105 / 100;

    }

    return accounts.length;

  }

  function openAccount() returns (uint) { … }

}



Smart Contract Static Analysis31

Vulnerability 2: Wallet Griefing

for (uint i = 0; i < investors.length; i++) {  

  if (investors[i].invested < min_investment) {

    // Refund, and check for failure. 

    // Looks benign but locks entire contract

    // if attacked by a griefing wallet.

    if (!(investors[i].addr.send(investors[i].dividendAmount))) { 

        throw;

    }

    investors[i] = newInvestor;

  }

}
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Vulnerability 3: Integer Overflow

contract Overflow {

  Payee payees[];

  

  function goOverAll() {

    for (var i = 0; i < payees.length; i++) { 

    ... 

    }

  }

  ...

}

uint8
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Higher level analyses
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Overview of MadMax
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Higher Level Analyses

Structured loop reconstruction:
● Induction Variables & Loop Exit Conditions

Alias Analyses
High level data structure semantic analysis
Cool concepts such as:

● IncreasedStorageOnPublicFunction
● PossiblyResumableLoop 
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Modeling Storage & Data Structures
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Example top-level query

UnboundedMassOp(loop) ←
  IncreasedStorageOnPublicFunction(arrayId),
  ArrayIdToStorageIndex(arrayId, storeOffsetVar),
  Flows(storeOffsetVar, index),
  VarIndexesStorage(storeOrLoadStmt, index),
  InLoop(storeOrLoadStmt, loop),
  ArrayIterator(loop, arrayId),
  InductionVar(i, loop),
  Flows(i, index),
  !PossiblyResumableLoop(loop).
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Experimental Evaluation
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Results: Effectiveness

Analysed entire blockchain:
6.33M contracts (90k unique) in 10 hours
4.1% susceptible to unbounded iteration.
0.12% susceptible to wallet griefing.
1.2% susceptible to loop overflows.

Combined holding of 7.07 million ETH

81% estimated precision
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Insights: Iteration and Data Structures

Reconstructing high level data structure semantics 
critical for low false positive rate.
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Related work
Approach Works Soundy Automated Bytecode General

Symbolic 
Execution

- Oyente by Luu et al. (2016)
- Maian by Nikolic et al. (2018)
- gasper by Chen et al. (2017)
- Grossman et al. (2017)

👎 👍 👍 👎

Formal 
Verification

- Proofs in Isabelle/HOL by 
Hirai (2017) & Amani et al. 
(2018)
- Proofs in the K framework
by Hildenbrandt et al. (2017)
- Formalism of EVM in F* by 
Bhargavan et al. (2016)

👍 👎 👎 👎
Abstract 
interpretation 
on Solidity

- Zeus by Kalra et al. (2018)
- FSolidM by Mavridou and 
Laszka (2018) 👍 👍 👎 👍

Abstract 
interpretation 
on EVM 
bytecode

MadMax (OOPSLA’18)

(Our Approach) 👍 👍 👍 👍
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Conclusions

Datalog lends itself well to:
● Program analyzers (even flow-sensitive ones)
● High level decompilers

MadMax, a vulnerability detection tool:
● Scales to the entire Blockchain
● Interesting results, practical impact

Decompilation a very important step
● Current work focuses on this
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