
Smart Contract Static Analysis:
Decompilation and Gas Vulnerabilities

Yannis Smaragdakis (UAthens, Dedaub)

joint work with

Neville Grech (UAthens/UMalta, Dedaub)
Michael Kong (USydney)
Anton Jurisevic (USydney)
Lexi Brent (USydney)
Bernhard Scholz (USydney) OOPSLA‘18 / ICSE'19

yannis@smaragd.org

Smart Contract Static Analysis2

What Do I Do?

Static analysis research
●trying to create a model of all possible program
behaviors

●mature framework for Java bytecode, less so for
LLVM bitcode

This talk: two pieces of recent work, on
Ethereum

●MadMax: detector for gas-related vulnerabilities
●Gigahorse: a decompiler for EVM bytecode (and
more)

Smart Contract Static Analysis3

Secret Sauce: Declarative Specifications

All analyses specified declaratively, in the
Datalog language

●i.e., logical rules (hundreds of them)
E.g.,
LoopBoundBy(loop, var) ←
InductionVar(i, loop),
!InductionVar(var, loop),
Flows(var, condVar),
Flows(i, condVar),
LoopExitCond(condVar, loop).

4

Blockchain and Cryptocurrencies
Background

Smart Contract Static Analysis5

Cryptocoins

Virtual money
●money = something that I believe has value
because I believe that others believe has value
● no inherent value, only ability to exchange

●usually this collective hallucination
(“consensus”) starts from a trusted authority

●in cryptocurrencies: decentralized consensus,
possible without trusted authority

Smart Contract Static Analysis6

Smart Contract Static Analysis7

Smart Contract Static Analysis8

Cryptography for our Purposes

Two main functions:
● unforgeable signatures, identification
● publication of boxes with locks that only I can open

● an infinite number of boxes, of all possible sizes, can fit other boxes
inside

“Have” = “Know”

Smart Contract Static Analysis9

Blockchain

A decentralized ledger of transactions
● maintained by untrusted peers

Continuously expanding chain of blocks
● longest chain is accepted as valid

Peers collect transactions, try to form new block
● by mining: solving a crypto-puzzle (proof of work)
● reward for solver (“miner”)

Peers accept the block if transactions consistent
Blocks sign previous ones

Smart Contract Static Analysis10

Example Structure

Smart Contract Static Analysis11

Ethereum Blockchain

Main novelty: smart contracts
● complete programs, persistently on the blockchain
● accounts managed by smart contracts
● can call into them, starts a transaction

Gas: fee paid for running them
● translated in Ether (the Ethereum currency)
● bounded/hard coded

Smart Contract Static Analysis12

Security Threats

Smart Contract Static Analysis13

Smart Contract Static Analysis14

DAO Hack

contract SimpleDAO { ...
 function withdraw(uint amount) {
 if (credit[msg.sender] >= amount) {
 msg.sender.call.value(amount)();
 credit[msg.sender] -= amount;
} } }

Smart Contract Static Analysis15

DAO Hack

contract SimpleDAO { ...
 function withdraw(uint amount) {
 if (credit[msg.sender] >= amount) {
 msg.sender.call.value(amount)();
 credit[msg.sender] -= amount;
} } }

contract Attack {
 ... function() { dao.withdraw(10); } ...
}

17

Gigahorse Decompiler

Go to http://contract-library.com

Smart Contract Static Analysis18

EVM Bytecode Decompilation is Hard!

● Ethereum vs. JVM/CIL bytecode
● No data structures, objects, methods or types
● Stack depth can be different under different control flow

paths
● All control-flow edges (jumps) are variables, not

constants
● All functions of a contract are fused in one (jumps

transfer control)

http://contract-library.com/

Smart Contract Static Analysis19

Decompilation: Stratification Points

Original
Bytecode

Whole program
3 address IR

+ CFG

3 address IR
+ function bounds

+ local CFGs

Functional
3-address code

1. Whole contract ctx & flow sensitive analysis

2. Function extraction algorithms

3. Function argument inference
with flow sensitive analysis

Smart Contract Static Analysis20

Large-Scale Recursion

BBlock Inputs

BBlock Outputs

CFG

Reachability

BBlock
Summaries

Smart Contract Static Analysis21

Heuristics: Functions That Return

 PUSH4 <return> // return address

 PUSH4 0xFF // push data

 PUSH4 <foo> // function address

 JUMP // jumps to ‘foo’

return: JUMPDEST

 ...

 ...

foo: JUMPDEST

 POP // pops data

 JUMP // jumps to ‘return’

Smart Contract Static Analysis22

Heuristics: Functions That Return

 PUSH4 <return> // return address

 PUSH4 0xFF // push data

 PUSH4 <foo> // function address

 JUMP // jumps to ‘foo’

return: JUMPDEST

 ...

 ...

foo: JUMPDEST

 POP // pops data

 JUMP // jumps to ‘return’

Detect flows of
Return addresses

Smart Contract Static Analysis23

Heuristics: Finding More Functions
i = 1.

do {

 InFunctioni(block, block) FunctionEntry← i-1(block).

 InFunctioni(next, func) ←

 InFunctioni(block, func),BlockEdge(block, next),

 !FunctionCalli-1(block, next), !Function_Exit(block).

 FunctionCalli(prev, block), FunctionEntryi(block) ←

 InFunctioni(block, f1), InFunctioni(block, f2), f1 != f2,

 BlockEdge(prev, block), !FunctionExit(prev),

 !InFunctioni(prev, f1), !InFunctioni(prev, f2).

 i = i + 1.

} until fixpoint(FunctionEntry)

Smart Contract Static Analysis24

Output IR After Function Arg Inference

private 0xa3b (va1, va2, va3) (int4, int16)→
 f1 := CONST 0xa4b

 ret := CONST 0x3f

 v1, v2 := CALLPRIVATE(f1, ret, va2)

 r1 := SHA3(va2, va3)

 RETURNPRIVATE va1, r1, v1;

}

private 0xa4b(va1, va2) (int4, int16)→
...

}

Smart Contract Static Analysis25

Implementation

●A few (<5) KLoC of Datalog
●Decompiles 99.9% of entire Ethereum
blockchain in 2 hours

26

MadMax: Gas-Focused Vulnerability
Detection

Smart Contract Static Analysis27

What is MadMax? [OOPSLA'18]

Cutting-edge (exhaustive) static analysis
● Abstract Interpretation, CFA Flow Analysis, memory modeling

Performs analysis directly on the bytecode
● Source code only available for 0.34% of contracts (Etherscan)

Evaluated on the entire Ethereum blockchain
● Found $5B on vulnerable contracts (81% estimated precision)

28

Gas-focused vulnerabilities

Smart Contract Static Analysis29

Gas Focused Vulnerabilities

● Gas is needed to execute contracts:
● Paid for by the account that calls the smart contract
● Has monetary value - prevents wasting of resources
● If not enough gas is budgeted, transaction is reverted
● Possibly blocking forever due to lack of progress

● Contract susceptible to DoS attacks if
attacker can cause it to require unbounded
gas

Smart Contract Static Analysis30

Vulnerability 1: Unbounded Mass Ops

contract NaiveBank {

 struct Account {

 address addr;

 uint balance;

 }

 Account accounts[];

 function applyInterest() returns (uint) {

 for (uint i = 0; i < accounts.length; i++) {

 // apply 5 percent interest

 accounts[i].balance = accounts[i].balance * 105 / 100;

 }

 return accounts.length;

 }

 function openAccount() returns (uint) { … }

}

Smart Contract Static Analysis31

Vulnerability 2: Wallet Griefing

for (uint i = 0; i < investors.length; i++) {

 if (investors[i].invested < min_investment) {

 // Refund, and check for failure.

 // Looks benign but locks entire contract

 // if attacked by a griefing wallet.

 if (!(investors[i].addr.send(investors[i].dividendAmount))) {

 throw;

 }

 investors[i] = newInvestor;

 }

}

Smart Contract Static Analysis32

Vulnerability 3: Integer Overflow

contract Overflow {

 Payee payees[];

 function goOverAll() {

 for (var i = 0; i < payees.length; i++) {

 ...

 }

 }

 ...

}

uint8

33

Higher level analyses

Smart Contract Static Analysis34

Overview of MadMax

Smart Contract Static Analysis35

Higher Level Analyses

Structured loop reconstruction:
● Induction Variables & Loop Exit Conditions

Alias Analyses
High level data structure semantic analysis
Cool concepts such as:

● IncreasedStorageOnPublicFunction
● PossiblyResumableLoop

Smart Contract Static Analysis36

Modeling Storage & Data Structures

Smart Contract Static Analysis37

Example top-level query

UnboundedMassOp(loop) ←
 IncreasedStorageOnPublicFunction(arrayId),
 ArrayIdToStorageIndex(arrayId, storeOffsetVar),
 Flows(storeOffsetVar, index),
 VarIndexesStorage(storeOrLoadStmt, index),
 InLoop(storeOrLoadStmt, loop),
 ArrayIterator(loop, arrayId),
 InductionVar(i, loop),
 Flows(i, index),
 !PossiblyResumableLoop(loop).

38

Experimental Evaluation

Smart Contract Static Analysis39

Results: Effectiveness

Analysed entire blockchain:
6.33M contracts (90k unique) in 10 hours
4.1% susceptible to unbounded iteration.
0.12% susceptible to wallet griefing.
1.2% susceptible to loop overflows.

Combined holding of 7.07 million ETH

81% estimated precision

Smart Contract Static Analysis41

Insights: Iteration and Data Structures

Reconstructing high level data structure semantics
critical for low false positive rate.

Smart Contract Static Analysis42

Related work
Approach Works Soundy Automated Bytecode General

Symbolic
Execution

- Oyente by Luu et al. (2016)
- Maian by Nikolic et al. (2018)
- gasper by Chen et al. (2017)
- Grossman et al. (2017)

👎 👍 👍 👎

Formal
Verification

- Proofs in Isabelle/HOL by
Hirai (2017) & Amani et al.
(2018)
- Proofs in the K framework
by Hildenbrandt et al. (2017)
- Formalism of EVM in F* by
Bhargavan et al. (2016)

👍 👎 👎 👎
Abstract
interpretation
on Solidity

- Zeus by Kalra et al. (2018)
- FSolidM by Mavridou and
Laszka (2018) 👍 👍 👎 👍

Abstract
interpretation
on EVM
bytecode

MadMax (OOPSLA’18)

(Our Approach) 👍 👍 👍 👍

Smart Contract Static Analysis43

Conclusions

Datalog lends itself well to:
● Program analyzers (even flow-sensitive ones)
● High level decompilers

MadMax, a vulnerability detection tool:
● Scales to the entire Blockchain
● Interesting results, practical impact

Decompilation a very important step
● Current work focuses on this

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43

