
Diagnosys: Automatic Generation of a
Debugging Interface to the Linux Kernel

Tegawendé F. Bissyandé, Laurent Réveillère
(University of Bordeaux)

Julia Lawall, Gilles Muller (INRIA/LIP6-Regal)

June 27, 2012

Bugs: They’re everywhere!

Bugs in software

Null pointer dereference:

if (!std || ...) {

if (std->len % qset->max_packet != 0)

return -EINVAL;

...

}

Use after free:

if (radio->disconnected) {

...

kfree(radio);

goto unlock;

}

...

unlock:

mutex unlock(&radio->disconnect lock);

Bugs in software

Null pointer dereference:

if (!std || ...) {

if (std->len % qset->max_packet != 0)

return -EINVAL;

...

}

Use after free:

if (radio->disconnected) {

...

kfree(radio);

goto unlock;

}

...

unlock:

mutex unlock(&radio->disconnect lock);

Bugs: What to do about them?

Static bug-finding tools

• Coccinelle, Coverity, FindBugs, SDV, Astree, etc.

Dynamic bug-finding tools

• Valgrind, KLEE, testing, etc.

These tools require complete programs, containing all code
fragments related to the bug.

Bugs: What to do about them?

Static bug-finding tools

• Coccinelle, Coverity, FindBugs, SDV, Astree, etc.

Dynamic bug-finding tools

• Valgrind, KLEE, testing, etc.

These tools require complete programs, containing all code
fragments related to the bug.

Problem: Bugs arising across the plugin/core boundary

Plugin:

tx skb = dev_alloc_skb(pkt_len);

pkt_data = skb_put(tx skb, pkt_len);

Core:

unsigned char *skb_put(struct sk_buff *skb, ...)

{ unsigned char *tmp = skb tail pointer(skb);

SKB_LINEAR_ASSERT(skb);

skb->tail += len; ...

}

• Plugin code is buggy:

– Should check for NULL.

• Core code is not robust:

– Dereferences its argument without checking.

• Bug in plugin leads to crash in core:

– Core is not well-known to plugin developers.
– Core contains a safety hole.

Issues

Should core exported functions be more robust?

• Plugging safety holes comes at a performance cost.

Should the core export a specific robust interface?

• Requires a stable set of exported functions.

• Induces maintenance.

• Limits evolvability.

The right choice is application dependent.

• We focus on Linux, which

– Does not export a fixed interface
– Does not require exported functions to be robust.

Further Linux issues

• Core code is large and complex.

• Many exported functions, most of which are undocumented.

• Debugging mostly relies on backtraces.

– Unreliable.
– Limited context information.

[847.353202] BUG: unable to handle kernel paging request at ffffffee

[847.353205] IP: [<fbc722d9>] btrfs_init_new_device+0xcf/0x5c5 [btrfs]

[847.353229] *pdpt = 00000000007ee001 *pde = 00000000007ff067

[847.353233] Oops: 0000 [#1] ...

[847.353291] EIP is at btrfs_init_new_device+0xcf/0x5c5 [btrfs] ...

[847.353298] Process btrfs-vol (pid: 3699, ...

[847.353312] Call Trace:

[847.353327] [<fbc7b84e>] ? btrfs_ioctl_add_dev+0x33/0x74 [btrfs]

[847.353334] [<c01c52a8>] ? memdup_user+0x38/0x70 ...

[847.353451] ---[end trace 69edaf4b4d3762ce]---

Our solution: Diagnosys
Goal: Rather than expect the Linux core developers to construct
and maintain a debugging interface, generate one automatically.

Automatically produce a readable log of dangerous operations
along the plugin/core boundary that may lead to a crash or hang.

Diagnosys architecture:

Safety hole
descriptions

Kernel analysis
(to infer usage preconditions of API functions)

Generation
(of a debugging interface tailored to the service)

Execution test
(with log traces even after a crash)

Linux kernel Service code

Tasks overseen by the kernel
maintainer using SHAna

Tasks overseen by the service
developer using DIGen

Our solution: Diagnosys
Goal: Rather than expect the Linux core developers to construct
and maintain a debugging interface, generate one automatically.

Automatically produce a readable log of dangerous operations
along the plugin/core boundary that may lead to a crash or hang.

Diagnosys architecture:

Safety hole
descriptions

Kernel analysis
(to infer usage preconditions of API functions)

Generation
(of a debugging interface tailored to the service)

Execution test
(with log traces even after a crash)

Linux kernel Service code

Tasks overseen by the kernel
maintainer using SHAna

Tasks overseen by the service
developer using DIGen

SHAna: Identifying kernel exported functions

Kernel exported functions are declared as:

• EXPORT SYMBOL(f)

• EXPORT SYMBOL GPL(f)

SHAna: Identifying safety holes

Safety hole: Code fragment within a core function that introduces
the possibility of a bug across the core/plugin boundary.

• Entry safety holes are certain or possible.

• Exit safety holes are always possible.

Entry safety hole ED
��
⊥

BC
oo⊥ Exit safety hole

SHAna: Identifying safety holes

Observation: Any bug type that involves multiple disjoint code
fragments can lead to an entry or exit safety hole.

• We consider bug types identified by Chou et al. [SOSP01]

• Interprocedural analysis.

Example:

... Exit safety hole

Lock

Bug ...

Unlock

... Entry safety hole

DIGen: The generated code

static inline <rtype> __debug_<kernel function> (...) {

<rtype> __ret;

/* Check preconditions for entry safety holes */
if <an entry safety-hole safety precondition is violated>

diagnosys_log(<EF id>, <SH cat>, <info (e.g., arg number)>);

/* Invocation of the intended kernel function */
__ret = <call to kernel function>;

/* Check preconditions for exit safety holes */
if <an exit safety-hole safety precondition is violated>

diagnosys_log(<EF id>, <SH cat>, <info (e.g., err ret type)>);

/* Forward the return value */
return __ret;

}

#define <kernel function> __debug_<kernel function>

The developer’s view

1. SHAna is run once by a kernel maintainer.

– Results published for download.

2. Developer compiles plugin code using a dedicated make script
(dmake).

– Identifies kernel exported functions.
– Invokes DIGen.

3. DIGen generates a header file containing a robust wrapper for
each used kernel exported function.

4. dmake recompiles the code, including the header file.

Steps 2-4 are transparent once the developer invokes dmake.

Evaluation

• Scope of the problem

• Improvement in debuggability

– Qualitatively
– Quantitatively

• Performance overhead

Scope of the problem

Linux 2.6.32 Number of exported functions collected in the

Safety hole entry sub-category exit sub-category

Block 367 815
INull/Null 7,220 1,124
Var 5 11
Lock/Intr/LockIntr 815 23
Free - 11
Size 8 -
Range - 8

Safety holes identified using Coccinelle.

• Around 400 false positives, mostly due to multiple
architecture-specific function definitions.

About half of the in-kernel calls to kernel exported functions call
functions with safety holes.

Qualitative improvement in debuggability

A bug in btrfs code (and its fix)

bdev = open_bdev_exclusive(...);

- if (!bdev) return -EIO;

+ if (IS_ERR(bdev)) return PTR_ERR(bdev);

Kernel gives a backtrace from wherever bdev is dereferenced.

Diagnosys reports on previous dangerous operations.

...

[4294934950]|@/var/diagnosys/tests/my_btrfs/volumes.c:1441|

open_bdev_exclusive|INULL(EXITED)|ERR PTR|

Quantitative improvement in debuggability

Category
Kernel
module

of
mutations

of crashes with
Coverage

no log
log is

not last
log is
last

Networking
e1000e 57 0 0 20 100%
iwlagn 18 1 0 8 88.9%
btusb 9 1 0 7 87.5%

USB drivers
usb-storage 11 0 0 3 100%
ftdi sio 9 0 0 6 100%

Multimedia snd-intel8x0 3 1 0 2 66.7%
device drivers uvcvideo 34 3 3 17 73.9%

File systems
isofs 28 3 0 9 75.0%
nfs 309 13 9 157 87.7%
fuse 77 3 1 41 91.1%

• Mutations remove NULL/IS ERR tests.
• Inject allocation failures when initializing the tested value.

Quantitative improvement in debuggability

In 230 oops reports derived from mutation tests (NULL and lock)

• Diagnosys log contains information about the mutation 92%
of the time.

• Debugging without Diagnosys required consulting 1 to 14
functions, in up to 4 files.

• Diagnosys often halves this number.

Performance overhead

Network driver: netperf benchmark

Test Without Diagnosys With Diagnosys Overhead

TCP STREAM Throughput 907.91 Mb/s 904.32 Mb/s 0.39%

UDP STREAM Throughput 951.00 Mb/s 947.73 Mb/s 0.34%

UDP RR Throughput 7371.69 Tx/s 6902.81 Tx/s 6.36%

File system: IOzone benchmark

Record block
Without Diagnosys With Diagnosys

Overhead
(Access rate - K/sec) (Access rate - K/sec)

size(Kb) read/write read/write read/write

128 45309/31672 42141/28072 6.99%/11.36%

256 49780/36577 48196/32900 3.18%/10.05%

512 49764/39957 45765/37981 8.03%/4.94%

Conclusion

• Developing plugins for a large code base is a challenge for
developers.

– Documentation not up to date.
– Crashes/hangs hard to interpret.

• We have identified safety holes as a probable source of
difficulties.

• We propose Diagnosys to automatically generate wrappers
that log dangerous uses of functions that contain safety holes.

• Usable in practice:

– On mutation tests, reduces the amount of work to find bugs.
– Low performance overhead (no impact on in-kernel calls).

