Diagnosys: Automatic Generation of a
Debugging Interface to the Linux Kernel

Tegawendé F. Bissyandé, Laurent Réveillere
(University of Bordeaux)
Julia Lawall, Gilles Muller (INRIA/LIP6-Regal)

June 27, 2012

Bugs: They're everywhere!

Bugs in software

Null pointer dereference:

if (tstd |l ...0) o
if (std->len % gset->max_packet != 0)
return -EINVAL;

Bugs in software

Null pointer dereference:

if (tstd |l ...0) o
if (std->len % gset->max_packet != 0)
return -EINVAL;

Use after free:

if (radio->disconnected) {

kfree(radio);
goto unlock;

}
unlock:
mutex_unlock (&radio->disconnect_lock) ;

Bugs: What to do about them?

Static bug-finding tools

e Coccinelle, Coverity, FindBugs, SDV, Astree, etc.

Dynamic bug-finding tools
e Valgrind, KLEE, testing, etc.

Bugs: What to do about them?
Static bug-finding tools
e Coccinelle, Coverity, FindBugs, SDV, Astree, etc.

Dynamic bug-finding tools
e Valgrind, KLEE, testing, etc.

These tools require complete programs, containing all code
fragments related to the bug.

Problem: Bugs arising across the plugin/core boundary

Plugin: Core:
tx.skb = dev_alloc_skb(pkt_len); unsigned char *skb_put(struct sk_buff #*skb, ...)
pkt_data = skb_put(tx_skb, pkt_len); { unsigned char *tmp = skb_tail_pointer(skb);

SKB_LINEAR_ASSERT (skb) ;
skb->tail += len; ...

}

e Plugin code is buggy:
— Should check for NULL.

e Core code is not robust:
— Dereferences its argument without checking.

e Bug in plugin leads to crash in core:

— Core is not well-known to plugin developers.
— Core contains a safety hole.

Issues

Should core exported functions be more robust?

e Plugging safety holes comes at a performance cost.

Should the core export a specific robust interface?
e Requires a stable set of exported functions.
e Induces maintenance.

e Limits evolvability.

The right choice is application dependent.
e We focus on Linux, which

— Does not export a fixed interface
— Does not require exported functions to be robust.

Further Linux issues

e Core code is large and complex.

e Many exported functions, most of which are undocumented.

e Debugging mostly relies on backtraces.

— Unreliable.
— Limited context information.

847.353202] BUG: unable to handle kernel paging request at ffffffee
847.353205] IP: [<fbc722d9>] btrfs_init_new_device+0xcf/0x5c5 [btrfs]
847.353229] *pdpt = 00000000007ee001 *pde = 00000000007££067
847.353233] Oops: 0000 [#1] ...

847.353291] EIP is at btrfs_init_new_device+0xcf/0x5c5 [btrfs] ...
847.353298] Process btrfs-vol (pid: 3699, ...

847.353312] Call Trace:

847.353327] [<fbc7b84e>] 7 btrfs_ioctl_add_dev+0x33/0x74 [btrfs]
847.353334] [<c01c52a8>] 7 memdup_user+0x38/0x70 ...

847.353451] ---[end trace 69edaf4b4d3762ce]---

kil it R e

Our solution: Diagnosys
Goal: Rather than expect the Linux core developers to construct
and maintain a debugging interface, generate one automatically.

Automatically produce a readable log of dangerous operations
along the plugin/core boundary that may lead to a crash or hang.

Our solution: Diagnosys
Goal: Rather than expect the Linux core developers to construct
and maintain a debugging interface, generate one automatically.

Automatically produce a readable log of dangerous operations
along the plugin/core boundary that may lead to a crash or hang.

Diagnosys architecture:

Tasks overseen by the kernel
maintainer using SHAna

Tasks overseen by the service
developer using DIGen

Linux kernel Service code
k
Kernel analysis » Generation

(to infer usage preconditions of API functions) (of a debugging interface tailored to the service)

¥

Execution test
(with log traces even after a crash)

Safety hole
descriptions

SHAna: Identifying kernel exported functions

Kernel exported functions are declared as:
e EXPORT_SYMBOL(f)
e EXPORT_SYMBOL_GPL (f)

SHAna: Identifying safety holes

Safety hole: Code fragment within a core function that introduces
the possibility of a bug across the core/plugin boundary.

e Entry safety holes are certain or possible.

o Exit safety holes are always possible.

Entry safety hole

1 Exit safety hole

SHAna: Identifying safety holes

Observation: Any bug type that involves multiple disjoint code
fragments can lead to an entry or exit safety hole.

e We consider bug types identified by Chou et al. [SOSPO01]

e Interprocedural analysis.

Example:

—_— J Exit safety hole
Lock

Unlock
— .. T Entry safety hole

Bug

DIGen: The generated code

static inline <rtype> __debug_<kernel function> (...) {

}

<rtype> __ret;

/* Check preconditions for entry safety holes */

if <an entry safety-hole safety precondition is violated>
diagnosys_log(<EF id>, <SH cat>, <info (e.g., arg number)>);

/* Invocation of the intended kernel function */

__ret = <call to kernel function>;

/* Check preconditions for exit safety holes */

if <an exit safety-hole safety precondition is violated>
diagnosys_log(<EF id>, <SH cat>, <info (e.g., err ret type)>);

/* Forward the return value */

return __ret;

#define <kernel function> __debug_<kernel function>

The developer's view

1. SHAna is run once by a kernel maintainer.
— Results published for download.

2. Developer compiles plugin code using a dedicated make script
(dmake).

— ldentifies kernel exported functions.
— Invokes DIGen.

3. DIGen generates a header file containing a robust wrapper for
each used kernel exported function.

4. dmake recompiles the code, including the header file.

Steps 2-4 are transparent once the developer invokes dmake.

Evaluation

e Scope of the problem

e Improvement in debuggability

— Qualitatively
— Quantitatively

e Performance overhead

Scope of the problem

Linux 2.6.32 Number of exported functions collected in the
Safety hole entry sub-category exit sub-category
Block 367 815
INull/Null 7,220 1,124

Var 5 11
Lock/Intr/Lockintr 815 23

Free - 11

Size 8 _

Range - 8

Safety holes identified using Coccinelle.

e Around 400 false positives, mostly due to multiple
architecture-specific function definitions.

About half of the in-kernel calls to kernel exported functions call
functions with safety holes.

Qualitative improvement in debuggability

A bug in btrfs code (and its fix)

bdev = open_bdev_exclusive(...);
- if (!'bdev) return -EIO;
+ if (IS_ERR(bdev)) return PTR_ERR(bdev);

Kernel gives a backtrace from wherever bdev is dereferenced.

Diagnosys reports on previous dangerous operations.

[4294934950] |@/var/diagnosys/tests/my_btrfs/volumes.c:1441|
open_bdev_exclusive | INULL (EXITED) |ERR PTR|

Quantitative improvement in debuggability

of crashes with

Category Kernel # o.f - - Coverage
module mutations | log is log is
MO 08 ot last last
€1000e 57 0 0 20 100%
Networking iwlagn 18 1 0 8 88.9%
btusb 9 1 0 7 87.5%
. usb-storage 11 0 0 3 100%
USB drivers ¢4 sio 9 o o0 6 100%
Multimedia snd-intel8x0 3 1 0 2 66.7%
device drivers uvcvideo 34 3 3 17 73.9%
isofs 28 3 0 9 75.0%
File systems nfs 309 13 9 157 87.7%
fuse 77 3 1 41 91.1%

e Mutations remove NULL/IS_ERR tests.
e Inject allocation failures when initializing the tested value.

Quantitative improvement in debuggability

In 230 oops reports derived from mutation tests (NULL and lock)

e Diagnosys log contains information about the mutation 92%
of the time.

e Debugging without Diagnosys required consulting 1 to 14
functions, in up to 4 files.

e Diagnosys often halves this number.

Performance overhead

Network driver: netperf benchmark

Test Without Diagnosys With Diagnosys Overhead
TCP_STREAM Throughput 907.91 Mb/s 904.32 Mb/s 0.39%
UDP_STREAM Throughput 951.00 Mb/s 947.73 Mb/s 0.34%
UDP_RR Throughput 7371.69 Tx/s 6902.81 Tx/s 6.36%

File system: 10zone benchmark

Without Diagnosys With Diagnosys
Record block (Access rate - K/sec) (Access rate - K/sec) Overhead
size(Kb) read/write read/write read/write
128 45309/31672 42141/28072 6.99%/11.36%
256 49780/36577 48196,/32900 3.18%/10.05%

512 49764 /39957 45765/37981 8.03%/4.94%

Conclusion

Developing plugins for a large code base is a challenge for
developers.

— Documentation not up to date.
— Crashes/hangs hard to interpret.

We have identified safety holes as a probable source of
difficulties.

We propose Diagnosys to automatically generate wrappers
that log dangerous uses of functions that contain safety holes.

Usable in practice:
— On mutation tests, reduces the amount of work to find bugs.
— Low performance overhead (no impact on in-kernel calls).

