Language Abstractions for

Modular Robots

Ulrik Pagh Schultz
Modular Robotics Lab http://modular.mmmi.sdu.dk

University of Southern Denmark

D pn B

Background: \ Analysis: Work in

* Modular robots Shortcomings |progress: The search

* Programming and general |language design for the right
modular robots abstractions/ |for modular abstractions
@MRL / distractions |robots

Reconfigurable modular robots

Robot constructed from
multiple physical modules
(mechatronic links)

Many variations, typically:
° local (limited) CPU

° neighbor-to-neighbor
communication

o physically interlocked
connections

Advantages: versatile, mass
production, fault tolerance!?

Applications: construction
kit ICRA Contingency
Challenge), ...

modular robots

Typically: modules can
physically move around in
the structure

Control: off-line/on-line

Advantages: adaptation,
fault tolerance!?

Challenges:

(e}

morphology (connector
design)
motion constraints

communication (global versus
local)

control (distributed, dynamic,
unreliable)

adapting behavior to physical
shape (and vice-versa)

http://modular.mmmi.sdu.dk

“gﬁ;’ .Programmlng adaptive behaviors:

* roles

\ SOUTH

abstract role Wheel extends Module {

require self.center == $SEAST_WEST;
require sizeof(self.connected(side)) ==

behavior move() {
self. $TURN_CONTINUOUSLY (turn_dir);

}

command evade() {
self. $TURN_CONTINUOUSLY (evasion_dir);
self.sleepcs(25);

}
}

role RightWheel extends Wheel { ... }

role Head extends Module {
require self.center ==
startup initialize() {
handle $PROXIM | $PROXIM_3 {
Wheel.evade(0);

$NORTH_SOUTH;

DynaRole [ICRA’09]

e Role = hierarchy of behaviors in
context

e Spatial constraints for activation
and deployment

o global “compass” wrt origin
° |ocal constraints

* Virtual machine, quick role-driven
reprogramming etc

[
Programming self-reconfiguration:

group behaviors

. . — sequence eight2car {
® Self-reCOnflgurathn — M@ . Connector[$CONNECTOR_Q].retract() &

. I M3.Connector[$CONNECTOR_4] .retract();
group Sequentla M3.Joint.rotateFromToBy(@,324,false,150);
behavior -

® Robust IOC&I/gIObaI EarZeight = reverse eight2car;
. . car2snake = carZeight + eightZ2snake;
execution In the snake2car = reverse car2snake;

presence of partial
hardware failure

e Manage physical
parallelism easily

e Automatic derivation

of reverse sequence
[Robotica’l |]

Programming spatial awareness: i

morphology

M3L: Modular Mechatronics Modeling Language
e DSL for arbitrary modular mechatronic system

< o * Automatic runtime forwards kinematics
oy [GPCE'10,ROS'I 1]

module ATRON:
point c@: coords=(0,1,-1),gender=“male”,extended=[bool]
point ..

link north: grouping=(c@,cl,c2,c3)
link south: grouping=(c4,c5,c6,c?7)

axis north_axis: origin=(0,0,0), direction=(0,1,0)
axis south_axis: origin=(0,0,0), direction=(0,-1,0)

joint center: type=revolute, value=[-inf,inf],

pair=C(north,north_axis),(south,south_axis))

Assessment

Useful abstractions: Missing abstractions:

e Roles = intra-modular e Global representation
state and behaviors of control
(but how to express?) * Interaction (influence)

» Sequences = fixed self- between roles
reconfiguration (but e Groups of modules:
how to generalize?) > interacting

e M3L+RolestlLabels = > adaptive behaviors
morphology- o composing behaviors
independent

» Key question: what are

programming (but the right abstractions?

maybe too complex?)

Analysis

* Module: behavior in a context (=state)
> a module plays a role given by its context
> role defines (local) reactive behaviors

* Group (ensemble): module interactions

° reactive and proactive behaviors according to
context

> execution by distributed state and consensus
o precise algorithm across modules

* Global (robot): probabilistic (next talk...)

Ensembles, roles, and modules

“Rocoin” overview: __(CarfrontGrad

e Ensemble: dynamic
distributed scope that
encapsulates shared
state and behavior

e Role: local state and
behavior

 Basic principles:
° interactions through
state changes

o distributed state and
execution by merging

[SCW’12,RC’12 wip]

http://modular.mmmi.sdu.dk

Ensemble: obstacle avoidance

ensemble Car {
state obstacle { None, Left, Right, Center } = None;
when (obstacle==None) Wheel.drive.Forward;
else Wheel.drive.Evade;

}

e Ensemble controls
overall behavior

 State changes:
o shared variables
> shared behavior execution
° role state assignments

Robust to packet loss and

role: detect state loss
obstacles

| role: rotate
according to state

http://modular.mmmi.sdu.dk 10

Ensemble: gradients

= _\CarFrontGrad ensemble GradientField {

int g = MAX_INT update {

min = MAX_INT;

for(ng: GradientField.g)
min = Math_min(min,ng);

g = (min+1);

¢

}

mixin role Source within GradientField {
g.update { g = 0; }

}

* Ciritical issue:

ensemble formation ensemble CarFrontGrad extends GradientField {

* Proposed solution: require subrole(Wheel)||subrole(Front);

restrict based on }
role Front extends Source { ... }
state

Ensemble: distributed execution

MO.connector[0].retract() | * Previous work:
M3.connector[4].retract(); o distributed state
M3.rotateFromTo(0,324); ... machine “program

— counter’’ is shared state

e Current work:
° condition = implicit /
explicit consensus

> fixed merge function

° loops: careful

o programmer control
over merge function
(reflection)

http://modular.mmmi.sdu.dk

Ensemble: reversibility

e Reversibility for error
recovery
° reverse at any program
point
° easy solution: step

counter part of shared
state

> merge: forward = MAX,
reverse = MIN

* Reversibility because

* Not yet remotely possible!
* Neural network + genetic we can

algorithms + magic [Christensen] > arbitrary controller
* Key question: can we enable any

programmer to do this?

o reversible role behaviors

Open questions

e Execution model
visible at language
level?

e Separation of
concerns also valid
for execution flow

e Declarative versus
operational

e General-purpose vs
DSL

Goal: morphogenesis

