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Delta Modeling 

Core Model:  
•  A model for a complete variant 
•  Developed with standard 

techniques or an existing legacy 
application 

 
 
 

Core 
Model Delta1 Deltan 

[…] 

Deltas:  
•  Modifications of core model 
•  Selection of deltas for each model 

variant 
•  Ordering for conflict resolution 
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Characteristics of Delta Modeling 

•  Modular and flexible description of change 
 
•  Automatic variant generation 

•  Easily integrates variability and evolution 

•  Paves way for efficient testing, analysis and verification  

•  Support for proactive, reactive and extractive SPLE 
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Deltas on Software Architectures Delta-oriented Architecture Models

K1 K2 

+ 

Delta 1 Add 

Delta 2 Add 

Delta 3 Rem 

+ 

+ 

Featuremodell 

Application 
Condition 

Feature- 
konfiguration 

Kernprodukt 

K3 

K1 K2 

K3 

K4 

K1 +K4 + 

Produkt 

Kern + Delta 1 

K4 K1 + 

Kern + Delta 1  
+ Delta 2 

K1 K2 

K3 
K4 

K1 K2 

K3 
K4 

Kern + Delta 1  
+ Delta 2 + Delta 3 

K1 K3 - - - 

Delta 4 Rem 

-K3 + 
K1 K2 

K4 

Kern + Delta 1  
+ Delta 2 + Delta 3 
+ Delta 4 

Sascha Lity | Delta-oriented SPL Testing | 19
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Deltas on State Machines 

Kern + Delta 1 + 
 

Delta 2 + Delta 3 

Kern + Delta 1 + 
 

Delta 2 

Kern + Delta 1 

T6: e3/ T7: e1/ 

Application 
Condition 

Feature- 
Konfiguration 

Feature-Modell 

S1 S2 

S3 

T1: e1/e2 

T2: e3/ T3: e2/ 

T5: e4/e6 T4: e5/e6 

Kernprodukt 

Delta 1 Add 

T1: e1/e2 

Delta 2 Rem 

Delta 3 Mod 

T5: e5/e2;e3;e4 

+ 

+ 

+ 

S1 S2 

S3 

T1: e1/e2 

T2: e3/ T3: e2/ 

T5: e4/e6 
T4: e5/e6 

T6: e3/ T7: e1/ S4 

S1 S2 

S3 

T2: e3/ T3: e2/ 

T5: e4/e6 T4: e5/e6 

T6: e3/ T7: e1/ S4 

S1 S2 

S3 

T2: e3/ T3: e2/ 

T4: e5/e6 

T6: e3/ T7: e1/ S4 

T5: e5/e2;e3;e4 

Produkt 

S1 S2 

S1 S2 

S3 

+ 
+ 

+ 

- 

* 

+ 
+ 

- 

* S2 

S4 
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Deltas in Java 

core Interval, Vehicle_Speed { 
 
class IntervalCmdProcessor { 
  int intervalSelection;   
  int vehicleSpeed;   
  int wipeCmd; 

   
  void computeWipeCmd() { 
     [...]   
   } 
} 

delta DRainEval when Rain_Sensor { 
   

 modifies class IntervalCmdProcessor { 
 
  adds int rainIntensity; 
 
  modifies computeWipeCmd() { 
    [...] 
  } 
 } 
} 

Core Modul: Java-Programs  Delta-Modul: Changes to Programs 

Type system guarantees syntactic correctness of generated variants: 

Delta clause-constraints:

adds C with K add the constraint “C with K ”
removes C remove constraint “C with · · ·”
modifies C with M change the constraint “C with K ” into “APPLY(modifiesC with M ,C with K )”

Delta subclause-constraints:

adds m with F add the constraint “m with · · ·”
removes m remove constraint “m with · · ·”
replaces m with F 0 change constraint “m with F ” into “m with F 0”
wraps m with F 0 change constraint “m with F ” into “m with F [F 0”

Figure 11. IFDJ: Syntax of delta clause constraints

Delta-subclause typing:

this : C ` adds Df : /0 (CT-S-ADDF) this : C ` MD : m with F original 62 MD

this : C ` adds MD : {adds m with F} (CT-S-ADDM)

this : C ` removes f : /0 (CT-S-REMF)
this : C ` removes m : {removes m} (CT-S-REMM)

this : C ` MD : m with F original 62 MD

this : C ` modifies MD : {replaces m with F} (CT-S-REPM) this : C ` MD : m with F original 2 MD

this : C ` modifies MD : {wraps m with F} (CT-S-WRAM)

Delta-clause typing:

` CD : C with K
` adds CD : adds C with K

(CT-C-ADDC) ` removes C : removes C (CT-C-REMC)

8i 2 1..q, this : C ` DSi : Si
` modifies C [extending D] { DS1 . . .DSq } : modifies C with ([i2{1,...,q}Si)

(CT-C-MODC)

Delta-module typing:

8i 2 1..n, ` DCi : dcci
` delta d · · · {DC1 . . .DCn} : {dcc1, ...,dccn}

(CT-DELTA)

Figure 12. IFDJ: Typing rules for delta subclauses, delta clauses and delta modules w.r.t. ACSTL

The result of the application of a set of delta clause constraints
D to a set of class constraints C , denoted by APPLY(D ,C ), is the
set of class constraints C 0 defined as follows:

C 0(C) =

8
><

>:

C (C) if C 62 dom(D)
C with K if C 62 dom(C )

and adds C with K 2D
APPLY(D(C),C (C)) if modifies C · · · 2D

where the application of the delta modifies-clause constraint
dcc = modifiesC with M = D(C) to the class-constraint cc =
C with K = C (C), denoted by APPLY(dcc,cc), is the class-
constraint cc0 = C with K 0 defined as follows:

cc0(m) =

8
>>>>><

>>>>>:

cc(m) if removes m · · · 62 dcc
and modifies m · · · 62 dcc

m with F if dcc(m) = adds m with F
or dcc(m) = replaces m with F

m with F [F 0 if dcc(m) = wraps m with F 0

and cc(m) = m with F

Given a class CT such that {C1, . . . ,Cn} = dom(CT) we write:
• ` CT OK to mean that ` CT(C1) . . .CT(Cn) OK holds according

to the rules in Figure 5, and
• ` CT : C to mean that ` core · · ·{CT(C1) . . .CT(Cn)} : C holds

according to the rules in Figure 10.

The following proposition states that the constraint application
operation defined above provides indeed a mean for computing the
class constraints for the class table APPLY(d ,CT) directly from the
delta clause-constraints for d and the class constraints for CT.

PROPOSITION 6.3. For every delta module d 2 dom(DMT) and for
every class table CT such that d is applicable to CT, if

• ` DMT(d ) : Dd , and
• ` CT : C ,

then ` APPLY(d ,CT) : APPLY(Dd ,C ).

Therefore, for each feature configuration y in F, the class con-
straints Cy for the product CTy can be generated (without gener-
ating the product) by applying the sets of delta clause-constraints
inferred for the delta modules DELTAS(y) to the class constraints
of the core module according to the after partial order.

6.5 Properties of IFDJ Constraint-based Typing
The IFDJ constraint-based type system enables checking the well-
typedness of all derivable products by analyzing the core module
and each of the delta modules in isolation (relying on the aggregate
class signature table), generating the constraints for the products,
and checking the constraints associated to each product with re-
spect to the class signature table of that product. The following the-

10 2010/12/6
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Deltas on Component Fault Diagrams 

Obstacle Moving

Collision AvoidableCollision

AND (G3)

AND (G2) AND (G4)

AND (G5)

NOT (G6)

Bumped (BUM) WithinCritical

Distance (WCD)

δAδB

δAδA

δA

δAδB

δBδB

δAδAδA

δAδAδA
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Agenda 

•  Language Workbench MontiCore 

•  Engineering Delta Modeling Languages with MontiCore 

•  Discussion 
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MontiCore 

Framework for development and processing of domain-specific languages 
 
Textual, grammar-based definition of languages and tools 
•  AST classes 
•  lexer/parser 
•  pretty printer 
•  editor 

Modular and compositional language development 
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Language Composition 

Language 1 Language 2 Language n 

Artifact 1 

Artifact 2 

Artifact n 

Artifact 1 

Artifact 2 

Artifact n 

Artifact 1 

Artifact 2 

Artifact n 

MontiCore-Framework (language independet) 

Glue Code (depends on language combination) 

Artifacts (language dependent, but independent of language combination) 
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MontiCore Grammar Format 

Integrated definition of lexer and parser productions, abstract and 
concrete syntax. 

1 grammar Statechart extends Common {
2 SCDefinition =
3 "statechart" Name
4 "{" Element* "}";
5

6 interface Element;
7

8 Transition implements Element =
9 source:Name "->" target:Name

10 ( (":" TransitionBody) | ";" );
11

12 State implements Element = "state" Name ...;
13 ...
14 }

Listing 4: Simplified excerpt of the UML/P
Statechart grammar.

Core grammars as input and produce delta languages that
are also defined by a MontiCore grammar as result. In this
section, we give a brief overview of MontiCore explaining all
relevant features.

MontiCore supports the specification and generation of all
relevant language processing artifacts for a specific textual
language that is defined by a grammar similar to EBNF.
Amongst other things, MontiCore generates the abstract
and concrete syntax of a language, a lexer, a parser, and a
set of runtime components, such as symbol tables and check-
ers for context conditions [20, 33]. A MontiCore grammar
is used to define the abstract as well as the concrete syntax
of a language in a single artifact.

Listing 4 shows a simplified excerpt of the Statechart gram-
mar which defines the language that is used for modeling the
UML/P [30] Statecharts in Listings 1 and 2. A MontiCore
grammar starts with the keyword grammar followed by the
name of the grammar (cf. l.1) and contains a set of produc-
tions defining available language elements. Listing 4 shows
three productions: SCDefinition (cf. l.2), Element (cf.
l.6), Transition (cf. l.8) and State (cf. l.12). SCDef-
inition defines the Statechart itself, State and Tran-
sition define the states and transitions of the Statechart.
Element is an interface which is explained later in this sec-
tion.

A production consists of a nonterminal and a right-hand
side (RHS) which specifies attributes and compositions within
the abstract syntax tree. As in EBNF, there might be ter-
minals (surrounded by quotation marks (cf. l.3)) and non-
terminals (cf. l.4) within the RHS. MontiCore allows to
distinguish repeatedly used nonterminals by preceding the
nonterminal with an identifier (cf. l.9). We also have repe-
tition (A*,A+), alternatives (A|B), and optionality (A?).

MontiCore also facilitates language reuse by supporting
modularity concepts like, e.g., language inheritance and com-
position (not shown here) [33, 30]. Language inheritance
means that one or more existing grammars can be extended
and refined by defining new grammar rules or redefining ex-
isting rules. This is denoted by the keyword extends fol-
lowed by the names of the extended grammars (cf. l.1). In
this way, a language developer can focus on the di↵erences
between the existing languages and the new language. To
ease the reusability and extensibility of languages, it is pos-
sible to define interface-nonterminals in MontiCore gram-
mars. An interface-nonterminal can be used like any other
nonterminal within the grammar (cf. l.4) and is introduced

Figure 1: Language hierarchy of concrete delta lan-
guages.

by the keyword interface (cf. l.6). This mechanism is
an extended form of alternatives. Thus the interface defini-
tion in l. 6 can be interpreted as Element = Transition
| State | ..., where the RHS contains an alternative
for every production that implements the interface. The
language inheritance and interface concept in MontiCore is
motivated by object-oriented inheritance and provides sim-
ple means to reuse and extend existing languages [19].
MontiCore also supports the definition and automatic check-

ing of context conditions to verify that a model is well-
formed. One simple context condition can, e.g., check whether
the names of states within a Statechart are unique.

4. DERIVATION PROCESS
Based on MontiCore technology, we now introduce the

process to derive a delta language for a given textual mod-
eling language. This approach relies on the language inher-
itance concepts of MontiCore. Figure 1 shows the language
hierarchy that is obtained when extending an existing source
language L with delta modeling constructs. The basis is
the abstract common� language that predefines the overall
structure of delta models. It additionally defines common
delta operations and specifies how to identify elements in a
model. The derived delta language �L extends this com-
mon language as well as the source language L. This way
all language elements of both languages are inherited and
are available in the grammar of language �L. The automat-
ically derived language �L is already complete but can also
be further refined manually in order to obtain a to domain
specific needs tailored delta language Extended-�L.

4.1 Common Delta Constructs
The common structure for deltas is defined in the common�

language that we provide as a MontiCore grammar in List-
ing 5. The syntactical structure of a delta is defined in ll. 8 –
13. A delta has a unique name and consists of DeltaEle-
ments (cf. l.12). This interface is implemented by produc-
tions that may be used directly within a delta. Each delta
has an optional ApplicationOrderConstraint (AOC)
(cf. l.10). An AOC is a logical expression over delta names,
that restricts which deltas have to be applied before the
current delta and which deltas must not be applied before.
In the common grammar, DeltaModify (cf. ll.15–20) is
the only production that implements the DeltaElement in-
terface, therefore every Delta Element is represented by a
DeltaModify. It can later also be implemented in the

Interface non-terminal: 
Set of Alternatives 
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Statechart Example 

statechart Telephone { 
    initial state Idle; 
    state Active { 
        state Busy; 
        state Call; 
     } 
     Idle -> Call :  [!isBusy] numberDialed() ; 
     Idle -> Busy : [ isBusy] numberDialed() ; 
     Active -> Idle : hangUp(); 
 } 

Busy 

Idle 
Call 

Active 
[!isBusy] 

numberDialed() 

[isBusy] 
numberDialed() 

hangUp() 
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Modularity and Reusability: Inheritance 

package mc.automaton; 
 
grammar Automaton { 
 

  Transition = 
    From:IDENT "-" Activate:IDENT ">" To:IDENT ";" ;    
 

} 

 
 
 
package mc.action; 
 

grammar ActionAutomaton extends Automaton { 
 
  TransitionWithAction extends Transition =  
    From:IDENT "-" Activate:IDENT  
    "[" Action:IDENT "]" ">" To:IDENT ";" ; 
 
} 

Transition 

from: String 
activate: String 
to: String 

mc.action 

mc.automaton 

TransitionWithAction 

action: String 

CD 
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Modularity and Reusability: Embedding 
§  Production may contain symbols defined in a different grammar 
 

 

 
 
grammar... { 
 
   
  Value = STRING 
    | Number  
    | IDENT 
    | "(" Expression ")"  
    | ... 
 
} 
 

 
 
grammar OD extends mc.umlp.common.Common { 
 
  external Value; 
 
  ODAttribute = 
        Modifier 
        Type? 
        name:IDENT 
        ("=" Value)? "; "; 
... 
 

import of external  
nonterminal 

usage in  
production 
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A Delta Language for Statecharts 

statechart Telephone { 
    initial state Idle; 
    state Active { 
        state Voicemail; 
        state Call; 
    } 
    state Dialing; 
    Dialing -> Call : [!isBusy] numberDialed(); 
    Dialing -> Voicemail : [isBusy] 
    numberDialed(); 
    Dialing -> Voicemail : [waited5seconds] 
    numberDialed(); 
    Idle -> Dialing: openLine(); 
    Active -> Idle : hangUp();} 

statechart Telephone { 
    initial state Idle; 
    state Active { 
        state Busy; 
        state Call; 
     } 
     Idle -> Call :  [!isBusy] numberDialed() ; 
     Idle -> Busy : [ isBusy] numberDialed() ; 
     Active -> Idle : hangUp(); 
 } 

delta Voicemail { 
  modify statechart Telephone { 
    add state Dialing; 
   
    add transition Idle -> Dialing: openLine(); 
   
    modify transition [Idle -> Call;]{ 
      set source Dialing; 
    } 

  
    modify transition [Idle -> Busy;]{ 
      set source Dialing; 
    } 
   
    modify state Active.Busy {  
      set name Voicemail; 
    } 
   
    add transition Dialing -> Voicemail:  
      [waited5seconds] numberDialed(); 
  } 
} 
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Language Hierarchy 

«handwritten» 
 Extended-ΔL 

«generated» 
 ΔL 

«predefined» 
 common∆ 

«handwritten» 
 L 

builds on 

builds on builds on 
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Common-Delta Constructs 

Delta

*

CD: Metamodel

«interface»

 DeltaOperation

*

Add Set Remove

ModelElement

 IdentifierPath

1

Application 

Order 

Constraint

0,1

«interface»

 DeltaElement  
DeltaModify

*

«interface»

ModelElement

Identifier

parts

elements

modelElement

operations
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Delta Modeling Procedure 

Provide initial 
configuration 

User Parser/Generator 

Read L 

Generate ∆L 
 
 
 
 
 

L 

∆L+ 
CoCos 

Extended-∆L 

Adapt ∆L Apply derivation  
rules 

Generate Parser Parser for  
Extended-∆L  

common∆ 

Build on  
common∆  

Derive 
CoCos 



June	
  2013	
  |	
  	
  Ina	
  Schaefer	
  |	
  Engineering	
  Delta	
  Modeling	
  Languages|	
  19	
  
	
  

isfisf

Logovarianten_3_andere Schriftarten)

Schriftart Logo: 
Bliss 2, Bold Italic

ISF

Schriftart Logo: 
Eterna, Bold Italic

ISF

ISF

ISF

isf isf

Common-Delta as MontiCore Grammar 

Extended-�L-grammar to add further operations that may
be used directly within a delta. The nonterminal ScopeI-
dentifier refers to an interface (cf. l.6) that is imple-
mented by productions in the generated delta language and
allows us to identify the model element which is to be mod-
ified. The nonterminal named modelElement (cf. l.18) is
used to define the context that is modified by the contained
DeltaOperations (cf. l.19). Modify statements defined
by the production DeltaModify may contain further mod-
ify statements as this production implements the interface
DeltaOperation.

1 // Elements that may be used directly within a
2 // delta model.
3 interface DeltaElement;
4

5 // Adds concrete syntax to modifies.
6 interface ScopeIdentifier;
7

8 Delta =
9 "delta" Name

10 ("after" ApplicationOrderConstraint)?
11 "{"
12 elements:DeltaElement*
13 "}";
14

15 DeltaModify implements

16 DeltaOperation, DeltaElement =
17 "modify" ScopeIdentifier
18 modelElement:ModelElementIdentifierPath "{"
19 DeltaOperation*
20 "}";
21

22 // To identify model elements.
23 interface ModelElementIdentifier;
24

25 // Hierarchical path of MEIs.
26 ModelElementIdentifierPath =
27 parts:ModelElementIdentifier
28 ("." parts:ModelElementIdentifier)*;
29

30 // Default identifier: qualified name.
31 DefaultModelElementIdentifier implements

32 ModelElementIdentifier =
33 QualifiedModelElementName;
34

35 interface DeltaOperation;
36

37 // Operand of a delta operation.
38 interface DeltaOperand;
39

40 DeltaAdd implements DeltaOperand = "add";
41 DeltaSet implements DeltaOperand = "set";
42 DeltaRemove implements DeltaOperand = "remove";
43

44 // Default remove operation.
45 DeltaRemoveOperation implements

46 DeltaOperation =
47 DeltaRemove target:ModelElementIdentifierPath
48 ";";

Listing 5: common� MontiCore grammar.

A ModelElementIdentifierPath is needed to identify
elements of the model. As depicted in Listing 5, it consists of
dot-separated ModelElementIdentifiers named parts
(cf. ll.25–28). Usually, models are hierarchically structured
by a contains relation. Hence, the order of the parts has to
reflect this hierarchical relation. Named model elements are
typically identified by their name. Therefore, the default

ModelElementIdentifier is a qualified name (cf. ll.30–
33). Models also contain unnamed parts, e.g., transitions in
a Statechart. The ModelElementIdentifier interface is
implemented in a concrete delta language for each unnamed
model element that has to be identified within a delta.
The interface DeltaOperation shown in Listing 5 is im-

plemented by delta operations that may be used within a
modify statement. Concrete operations must start with an
operand DeltaOperand (cf. l.38) that defines the syntax
of the concrete operation. Default operands are add for
set-based elements of a model (cf. l.40), set for singular
elements of a model (cf. l.41), and remove to delete el-
ements from a set or to delete optional singular elements
(cf. l.42). The default remove operation is given in ll. 44↵.
The target of the operation is identified by a ModelEle-
mentIdentifierPath as explained above. Distinguishing
between DeltaOperation and DeltaOperand allows us
to generate a single production rule DeltaOperation for
each nonterminal in the source language that represents all
available modification operands at once.

4.2 Derivation Rules
Based on the source language L and common�, we de-

scribe how to derive a delta language �L. For new nonter-
minals in �L, we use a composite name consisting of the
name of the original nonterminal and the interface that is
implemented, avoiding duplicate nonterminals. Within the
following derivation rules, we use indices to represent this.

Addressing Elements.
In the delta language, it should be possible to modify ev-

ery model element given by the nonterminals of the concrete
language. Thus, we need to provide an implementation of
the interface ModelElementIdentifier for all nontermi-
nals N 2 L. With the following rules, we ensure that every
nonterminal can be identified, either by the default produc-
tion using a qualified name or the element itself. During
the automatic generation of �L we consider an element as
addressable if it has a qualified name nonterminal with an
identifier name.

1a. For every nonterminal N that can be identified by a
qualified name, the default implementation of common� is
used to address the model element.

1b. For every other nonterminal N , the concrete syntax
of the corresponding model element enclosed in brackets is
used for addressing it. Thus, for N , we introduce a new
nonterminal �NMEI and add a production of the form:

�NMEI implements ModelElementIdentifier
= ”[” N ”]”

Scope Identifier.
The ScopeIdentifier interface of common� is used

to specify the element type that is addressed by the Mod-
elElementIdentifier. With this, we are able to distin-
guish di↵erent model element types if they have the same
ModelElementIdentifier but create di↵erent scopes for
the application of the delta operations. At the same time,
we are able to automatically create context conditions for
checking matching identifiers and types. We reuse the non-
terminal of L as concrete syntax of �L. With these kind

Extended-�L-grammar to add further operations that may
be used directly within a delta. The nonterminal ScopeI-
dentifier refers to an interface (cf. l.6) that is imple-
mented by productions in the generated delta language and
allows us to identify the model element which is to be mod-
ified. The nonterminal named modelElement (cf. l.18) is
used to define the context that is modified by the contained
DeltaOperations (cf. l.19). Modify statements defined
by the production DeltaModify may contain further mod-
ify statements as this production implements the interface
DeltaOperation.

1 // Elements that may be used directly within a
2 // delta model.
3 interface DeltaElement;
4

5 // Adds concrete syntax to modifies.
6 interface ScopeIdentifier;
7

8 Delta =
9 "delta" Name

10 ("after" ApplicationOrderConstraint)?
11 "{"
12 elements:DeltaElement*
13 "}";
14

15 DeltaModify implements

16 DeltaOperation, DeltaElement =
17 "modify" ScopeIdentifier
18 modelElement:ModelElementIdentifierPath "{"
19 DeltaOperation*
20 "}";
21

22 // To identify model elements.
23 interface ModelElementIdentifier;
24

25 // Hierarchical path of MEIs.
26 ModelElementIdentifierPath =
27 parts:ModelElementIdentifier
28 ("." parts:ModelElementIdentifier)*;
29

30 // Default identifier: qualified name.
31 DefaultModelElementIdentifier implements

32 ModelElementIdentifier =
33 QualifiedModelElementName;
34

35 interface DeltaOperation;
36

37 // Operand of a delta operation.
38 interface DeltaOperand;
39

40 DeltaAdd implements DeltaOperand = "add";
41 DeltaSet implements DeltaOperand = "set";
42 DeltaRemove implements DeltaOperand = "remove";
43

44 // Default remove operation.
45 DeltaRemoveOperation implements

46 DeltaOperation =
47 DeltaRemove target:ModelElementIdentifierPath
48 ";";

Listing 5: common� MontiCore grammar.

A ModelElementIdentifierPath is needed to identify
elements of the model. As depicted in Listing 5, it consists of
dot-separated ModelElementIdentifiers named parts
(cf. ll.25–28). Usually, models are hierarchically structured
by a contains relation. Hence, the order of the parts has to
reflect this hierarchical relation. Named model elements are
typically identified by their name. Therefore, the default

ModelElementIdentifier is a qualified name (cf. ll.30–
33). Models also contain unnamed parts, e.g., transitions in
a Statechart. The ModelElementIdentifier interface is
implemented in a concrete delta language for each unnamed
model element that has to be identified within a delta.
The interface DeltaOperation shown in Listing 5 is im-

plemented by delta operations that may be used within a
modify statement. Concrete operations must start with an
operand DeltaOperand (cf. l.38) that defines the syntax
of the concrete operation. Default operands are add for
set-based elements of a model (cf. l.40), set for singular
elements of a model (cf. l.41), and remove to delete el-
ements from a set or to delete optional singular elements
(cf. l.42). The default remove operation is given in ll. 44↵.
The target of the operation is identified by a ModelEle-
mentIdentifierPath as explained above. Distinguishing
between DeltaOperation and DeltaOperand allows us
to generate a single production rule DeltaOperation for
each nonterminal in the source language that represents all
available modification operands at once.

4.2 Derivation Rules
Based on the source language L and common�, we de-

scribe how to derive a delta language �L. For new nonter-
minals in �L, we use a composite name consisting of the
name of the original nonterminal and the interface that is
implemented, avoiding duplicate nonterminals. Within the
following derivation rules, we use indices to represent this.

Addressing Elements.
In the delta language, it should be possible to modify ev-

ery model element given by the nonterminals of the concrete
language. Thus, we need to provide an implementation of
the interface ModelElementIdentifier for all nontermi-
nals N 2 L. With the following rules, we ensure that every
nonterminal can be identified, either by the default produc-
tion using a qualified name or the element itself. During
the automatic generation of �L we consider an element as
addressable if it has a qualified name nonterminal with an
identifier name.

1a. For every nonterminal N that can be identified by a
qualified name, the default implementation of common� is
used to address the model element.

1b. For every other nonterminal N , the concrete syntax
of the corresponding model element enclosed in brackets is
used for addressing it. Thus, for N , we introduce a new
nonterminal �NMEI and add a production of the form:

�NMEI implements ModelElementIdentifier
= ”[” N ”]”

Scope Identifier.
The ScopeIdentifier interface of common� is used

to specify the element type that is addressed by the Mod-
elElementIdentifier. With this, we are able to distin-
guish di↵erent model element types if they have the same
ModelElementIdentifier but create di↵erent scopes for
the application of the delta operations. At the same time,
we are able to automatically create context conditions for
checking matching identifiers and types. We reuse the non-
terminal of L as concrete syntax of �L. With these kind
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Delta Language Derivation I 
1.  We need to address every element to define a delta. 

•  For every nonterminal N that can be identified by a qualifiied name, use the default 
implementation to address it. 

§  For every other nonterminal N, square brackets are used to address it. We introduce 
a new nonterminal: 

 ΔNMEI implements ModelElementIdentifier= "[" N "]„ 

 

 
2.  We need to define the scope. 

•  For every nonterminal N ∈ L, we introduce a new nonterminal NSI and generate a 
production of the form: 

  Δ NSI implements ScopeIdentifier = "N" 
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Delta Language Derivation II 
3.  We need rules to specify the delta operation we want to apply. 

§  For every nonterminal N ∈ L, we introduce a new nonterminal NDO  and generate an 
operation production of the form: 

  Δ NDO implements DeltaOperation = DeltaOperand N 

 

4.  We need to consider that nonterminals can be used more than once on the RHS of a 
production. 

§  For every nonterminal N ∈ L and for each identier ni of N, we introduce a new 
nonterminal nDOi and generate a production of the form: 

 Δ nDOi implements DeltaOperation = DeltaOperand "ni" N!
 

5.  We need to add delimiters. 
§  For every nonterminal N ∈ L that is neither a block statement nor a single line 

statement with a line delimiter, we modify the operation production and append a 
delimiter. 
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Context Conditions 
 
In addition to the derivation rules to create ∆L, we generate context conditions that provide 
semantic.  
 
The context conditions can check that, 

1.  the ModelElementIdentifier is referencing an existing element. 
2.  the ModelElementIdentifier references a model element that corresponds to 

its type.  
3.  a ModelElementIdentifierPath is valid in terms of its single concatenated 

elements. 
4.  the DeltaOperation is applicable within the scope of its surrounding modify 

statement. 
5.  a DeltaOperand is applicable for its element. 
6.  an element which should be added does not exist yet. 
7.  an element which should be remove exists. 
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1.  We start using the Statechart grammar 
2.  We create our new grammar 
3.  We implement the 

ModelElementIdentifier 
production for every nonterminal N ∈ L. 

4.  We derive the productions for the modify 
statements, which are used to denote 
which Statechart grammar construct we 
want to modify. 

5.  … 

Case Study 

grammar Statechart extends Common { 
  SCDefinition = 
    "statechart" Name 
    "{" Element* "}"; 
 
  interface Element; 
     
  Transition implements Element = 
    source:Name "->" target:Name 
    ( (":" TransitionBody) | ";" ); 
      State implements Element = state 
Name ...;   ... 
} 

SCTransitionIdentifier implements  
("[" SCTransition "]")=>  
ModelElementIdentifier = "[" SCTransition "]"; 

 
 
grammar DeltaStatechart extends CommonDelta, 
Statechart { 
 
  DeltaSCDefinition = Delta; 
 

DeltaSCStateScopeIdentifier implements 
ScopeIdentifier = "state"; 
     
DeltaSCStateChartScopeIdentifier 
implements ScopeIdentifier = 
"statechart"; 
     
DeltaSCTransitionScopeIdentifier 
implements  
ScopeIdentifier = "Transition"; 

DeltaStateOperation implements 
(DeltaOperand Transition)=> DeltaOperation 
= operand:DeltaOperand Transition; 
 
DeltaStateOperation implements 
(DeltaOperand State)=> DeltaOperation =             
operand:DeltaOperand State; 
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Extensions 

«handwritten» 
 Extended-ΔL 

«generated» 
 ΔL 

«predefined» 
 common∆ 

«handwritten» 
 L 

«handwritten» 
 PL 

«generated/handwritten» 
 ΔPL 

builds on 

builds on builds on 

builds on 

builds on 

builds on 

builds on 
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Summary: 

•  Delta modeling is a flexible approach to represent variability and 
evolution of models.  

•  Delta modeling languages can be generated for textual modeling 
languages. 

 
Future Work:  
 
•  Perform larger case studies on various modeling languages 
•  Generating delta modeling languages for visual modeling languages? 
•  Development of a pluggable delta type system 

Conclusion 
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Visual Delta Modeling in Simulink 

DABS.mdl

Figure 4: Delta for ABS Functionality

one AOC to a delta. In this case, all AOCs are combined to
a single AOC using a logical AND operation. The delta op-
erations in the right part adds the ports wheelSpeed1 . . .
wheelSpeed4 to model BrakingSystem and replaces the
contained block brakefunction with a model reference
block that references model ABS and has the same block
name.

Application Conditions. Delta operations must fulfill
a number of application conditions to be applicable in a
product generation process:

1. If an element eadd, i.e., a block, ports or a connection,
is to be added, there must not exist another element e
with the same name in the current context.

2. Connectors may only be added, if (a) source and tar-
get exist, and (b) the target is not already a target of
another connection.

3. Ports of subsystem blocks may only be removed, if they
are unconnected.

4. If an element erem is to be removed, erem has to exist in
the current context. As a special case, a weak remove
is not rejected, if erem does not exist. A weak remove
is useful to ensure that element erem does not exist
after applying a delta.

5. For modify blocks, we require the following:

(a) The context c of a modify block at the top level
of a delta always has to be a model.

(b) The context c of a modify block at lower levels of
a delta always has to be a subsystem.

(c) The context c of a modify block has to be valid.
If c refers a model, this model has to exist. If
c refers a subsystem sub, sub has to exist in the
parent context c.parent of c (c.f. Fig. 3).

6. For an operation ”replace bl with (modName) newBl”,
we require:

(a) The block bl that is to be replaced must exist in
the current context.

DABS_BrakingSystem.mdl

Figure 5: Braking System with ABS

(b) There must not exist another element named new-
Bl in the current context after removing bl.

(c) A model named modName must exist, if the sub-
stitute is a model block.

(d) The port interface of bl and newBl have to be
compatible.

Variant Selection and Generation. A product vari-
ant is defined by a set of deltas that have to be applied
to the core to generate this product variant. The genera-
tion process takes this set of selected deltas, called product
configuration, as input and computes the order in which
the selected deltas have to be applied by interpreting the
application order constraints. Then the deltas are applied
stepwise in the computed order to the core model. When a
delta is applied, the contained deltas operations transform
the core or the intermediate model. As an example, the
product variant ”BrakingSystem with ABS” is defined by
the product configuration {DABS}, containing delta DABS
as single element. The generated product variant that is
created by applying the delta DABS to the core model is
depicted in Fig. 5.

3. PROTOTYPICAL REALIZATION
In this section, we describe the prototypical realization

of Delta Simulink as an extension to Matlab/Simulink and
explain how a new Simulink variant model is created. The
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Related Work 

Comparison with Model transformation languages: 
 
(D1) Addressing elements to be modified: 
§  Delta models refer to concrete model. 
§  Graph transformation rules describe general patterns. 

(D2) Negative application conditions:  
§  Delta languages deliberately don’t offer constructs to define NACs.  
§  In order to avoid invalid models after transformation, NACs are used in transformative 

approaches. 
(D3) Different scope: 
§  Delta languages provide a restricted amount of delta operations for model-specific 

modifications. 
§  In contrast, graph transformation rules are capable of modeling arbitrary modifications. 


