
Copyright 2004-present Facebook. All Rights Reserved.

Program generation for
schema-based, typed

data access
Ralf Lämmel

Software Engineer
Facebook, London

Copyright 2004-present Facebook. All Rights Reserved.

Program generation —
A use case at Facebook

• Purpose of generation: typed data access ("O/R mapping" et al.)

• Meta = Object language = Hack (not to be confused with PHP)

• Input for generation: schemas (or mapping definitions)

Copyright 2004-present Facebook. All Rights Reserved.

Generate access code from schema

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

We illustrate the use
case with open-
source software.

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

Copyright 2004-present Facebook. All Rights Reserved.

The underlying codegen library

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

We illustrate the use
case with open-
source software.

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

Copyright 2004-present Facebook. All Rights Reserved.

Signing of generated code

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

Key ideas:
• Generate hash code from generated code.

• Prevent diffs that change the generated code.

We illustrate the use
case with open-
source software.

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

Copyright 2004-present Facebook. All Rights Reserved.

Further reading
• Introducing "hack-codegen"

• https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

• Open source code base for hack-codegen

• https://github.com/hhvm/hack-codegen

• Typed data access proof of concept (some form of EntSchema)

• https://github.com/hhvm/hack-codegen/tree/master/examples/dorm

• Docs on hack-codegen

• http://hhvm.github.io/hack-codegen/

• Information on the "Ent" framework

• https://github.com/facebook/dataloader

This is publicly available information
which does not perfectly match Facebook's internal approach.

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/
https://github.com/hhvm/hack-codegen
https://github.com/hhvm/hack-codegen/tree/master/examples/dorm
http://hhvm.github.io/hack-codegen/
https://github.com/facebook/dataloader

Copyright 2004-present Facebook. All Rights Reserved.

Program generation challenges
not just necessarily within the chosen scope at Facebook

• Metaprogramming support?
• Customization of generated code?
• Integration of generation with development?
• Complexity of generator!
• Size of the generated code!
• ...

Let's look at these challenges, one by one,
in terms of the aforementioned use case

and its Facebook instance.

Copyright 2004-present Facebook. All Rights Reserved.

Metaprogramming support?

Staging?

• Compile- or runtime generation may be too slow.

• It may disrupt development (e.g., source-code-based tooling).

• Staged programming support was not there to start with.

Type safety?

• The generators are tested a lot.

Concrete object syntax?

• Code construction is served by fluent APIs.

• There is a lot of logic; there is less templates.

Copyright 2004-present Facebook. All Rights Reserved.

Customization of generated code

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

• Manual sections are removed from signature for signing.
• Signing helps with avoiding unintended changes.
• Manual sections are kept when re-generating code.
- We may need to manage partially generated code.
- Changes of defaults may be non-obvious.
- Customized code may fail to break when it should.
- Host language may limit factoring of customization.

We illustrate the use
case with open-
source software.

https://code.facebook.com/posts/1624644147776541/writing-code-that-writes-code-with-hack-codegen/

Copyright 2004-present Facebook. All Rights Reserved.

Integration of program generation
with development

+ We generate code to test generated code.

- Generated code may be out of sync with database.

- Generated code may permit too much on database.

- Generated code may swamp version control.

- Generated code is in the face of the developer.

Copyright 2004-present Facebook. All Rights Reserved.

Complexity of generator

- Developers may face many different files per schema.
- The code generator is tied into lifecycle management.
- The codebase may get locked into large API.
- The evolution of the generator may be difficult.

Copyright 2004-present Facebook. All Rights Reserved.

Size of the generated code
- We start to have a problem, when the size of

generated code is in the same ballpark as the size
of the genuine code. Think of the time to ...
• re-generate,
• teach IDE,
• compile,
• run tests,
• commit,
• ...

Copyright 2004-present Facebook. All Rights Reserved.

Wanted!
• Improvements:

• Generate less code!
• Compile less code!
• Version-control much less code!
• Don't think so much in terms of code!
• Better separate generated and non-generated code!

• Preservation:
• Data access is typed!
• Provide IDE support such as code completion!
• Enable intuitive customization of generated code!

Get in touch, if
interested.

Copyright 2004-present Facebook. All Rights Reserved.

Towards a relatively
systematic literature survey

on program generation

Copyright 2004-present Facebook. All Rights Reserved.

Questions of interest — Broad category

• Does the approach address

• a case study (on program generation), or

• language support (for program generation), or

• an application domain (of program generation), or

• something else?
In reality, approaches may combine all of these.

Copyright 2004-present Facebook. All Rights Reserved.

Questions of interest — Application domain

• If the approach addresses a case study, then

• what is the underlying application domain?

• If the approach addresses language support, then

• does it point at some application domain?

• If the approach addresses an application domain, then

• which one is it and

• how well does it relate to data access?

Copyright 2004-present Facebook. All Rights Reserved.

Questions of interest — Language aspects

• What is the object language?

• What is the metalanguage?

• What language support is facilitated?

• What infrastructural support (e.g., a library) is facilitated?

In reality, meta = object language
may be a common case, of course.

Copyright 2004-present Facebook. All Rights Reserved.

Questions of interest — Generation time

• Is the code generated at ...

• (RT) run time or

• (CT) compile time or

• (BT) build time (i.e., ahead of compile time)?

• Does the generated code provide guarantees ...

• at run time (e.g., typed data access) or

• at compile time (e.g., well-typedness)?

Copyright 2004-present Facebook. All Rights Reserved.

Questions of interest — Customization

• Is customization of generated code facilitated, and, if so, ...

• is customization achieved by

• some form of specialization (e.g., subclassing) or

• some form of code changes, and, if so, ...

• is round-tripping / synchronization supported, and, if so, ...

• by what means and to what extent, or

• by other means and

• is such customization essential, and, if so,

• because of which specifics (language or domain)?

Copyright 2004-present Facebook. All Rights Reserved.

Questions of interest — Software engineering

• How is code generation addressed by the software building?

• How is code generation addressed by software testing?

• How is code generation addressed within the IDE?

• What other software engineering aspects are addressed?

Copyright 2004-present Facebook. All Rights Reserved.

Questions of interest — System design

• Does the generated code entail ...

• a black/gray box (e.g., a parser) ...

• as a service or

• at the command line or

• a library (essentially an interface) or

• a framework (typically requiring specialization) or

• a template (typically requiring some code changes)?

Copyright 2004-present Facebook. All Rights Reserved.

Venues
• GPCE https://dblp.uni-trier.de/db/conf/gpce/

• DSL https://dblp.uni-trier.de/db/conf/dsl/

• SAIG https://dblp.uni-trier.de/db/conf/saig/

• GTTSE https://dblp.uni-trier.de/db/conf/gttse/

• SLE https://dblp.uni-trier.de/db/conf/sle/

• PEPM https://dblp.uni-trier.de/db/conf/pepm/

• ICFP https://dblp.uni-trier.de/db/conf/icfp/

• POPL https://dblp.uni-trier.de/db/conf/popl/

• PLDI https://dblp.uni-trier.de/db/conf/pldi/

• ...

https://dblp.uni-trier.de/db/conf/gpce/
https://dblp.uni-trier.de/db/conf/dsl/
https://dblp.uni-trier.de/db/conf/saig/
https://dblp.uni-trier.de/db/conf/gttse/
https://dblp.uni-trier.de/db/conf/sle/
https://dblp.uni-trier.de/db/conf/pepm/
https://dblp.uni-trier.de/db/conf/icfp/
https://dblp.uni-trier.de/db/conf/popl/
https://dblp.uni-trier.de/db/conf/pldi/

Copyright 2004-present Facebook. All Rights Reserved.

GPCE 2017 papers
[...] Case

study
Language
support

Application
domain

Software
engineering Time Customization Typed data

access

HSpiral ・ ・ ◉ Search CT ・

CaVa ● ◉ Multi-lingual &
distributed BT ●

Guix ・ ・ ● RT
 PAX   ● ● ● Synthesis BT
QSR ・ ● ・ Library

optimization CT ・

MetaML ◉ Formal
semantics RT

Haskino ・ ● ・ Debugging BT
Silverchain ・ ◉ Usability of

APIs BT

SpiralS ● ・ ● High
performance BT

Control ◉ Type
soindness RT

Tensor ● ● ◉ Reusability BT

Copyright 2004-present Facebook. All Rights Reserved.

[HSpiral] A Haskell Compiler for
Signal Transforms (GPCE'17)

• Domain: signal transforms (FFT)

• Meta: Haskell

• Object: Haskell, C, deep embedded DSLs

• Concepts: type classes, monads, GADTs, type
families, index types, rewriting, compilation (to
C), deep embedding, quasi-quotation, search
(for optimization)

Copyright 2004-present Facebook. All Rights Reserved.

[CaVa] Automatic Generation of Virtual Learning Spaces
Driven by CaVaDSL: An Experience Report (GPCE'17)

• Domain: virtual learning spaces for cultural heritage

• Meta: Java

• Object: scripts, SPARQL, HTML, CSS, PHP, ...

• Concepts: external DSL, multi-lingual and distributed
target

Copyright 2004-present Facebook. All Rights Reserved.

[Guix] Code Staging in GNU Guix (GPCE'17)

• Domain: OS configuration and system administration

• Meta: Scheme

• Object: embedded DSLs for package definitions and
build actions

• Concepts: staging, macros, S-expressions

Copyright 2004-present Facebook. All Rights Reserved.

[PAX] Parser Generation by Example for Legacy Pattern
Languages (GPCE'17)

• Domain: parsing for legacy languages

• Meta: C# (for metamodel inference and C# generation)

• Object: metamodels (for patterns), C#

• Concepts: pattern synthesis (grammar inference), finite
state machines

Copyright 2004-present Facebook. All Rights Reserved.

[QSR] Quoted Staged Rewriting: A Practical Approach
to Library-De ned Optimizations (GPCE'17)

• Domain: stream fusion

• Meta: Scala

• Object: Scala

• Concepts: staging, quasi-quotation, rewriting, macros,
CPS, inlining

Copyright 2004-present Facebook. All Rights Reserved.

[MetaML] Refining Semantics for Multi-stage
Programming (GPCE'17)

• Domain: None (run-time code generation by staging)

• Meta: MetaML

• Object: ML

• Concepts: explicit substitutions, structural operational
semantics

Copyright 2004-present Facebook. All Rights Reserved.

[Haskino] Rewriting a Shallow DSL using a GHC
Compiler Extension (GPCE'17)

• Domain: embedded systems / microcontrollers

• Meta: Haskell

• Object: C

• Concepts: shallow and deep embedding, debugging,
firmware interpretation, translation, monads, shallow-to-
deep transformation, compiler plugin

Copyright 2004-present Facebook. All Rights Reserved.

[Silverchain] Silverchain: A Fluent API Generator
(GPCE'17)

• Domain: fluent API generation

• Meta: not defined (Java?)

• Object: grammars (input), class definitions (output)

• Concepts: fluent APIs, deterministic push-down
automata, BNF

Copyright 2004-present Facebook. All Rights Reserved.

[SpiralS] Staging for Generic Programming in Space and
Time (GPCE'17)

• Domain: convolution on images and FFT

• Meta: Scala

• Object: Java

• Concepts: lightweight modular staging (LMS),
polymorphism, generic programming

Copyright 2004-present Facebook. All Rights Reserved.

[Control] Staging with Control: Type-Safe Multi-stage
Programming with Control Operators (GPCE'17)

• Domain: None (run-time code generation by staging)

• Meta: None (a calculus in MetaML style)

• Object: None

• Concepts: staging, control operators (shift0, reset0),
computational effects, type soundness, type inference

Copyright 2004-present Facebook. All Rights Reserved.

[Tensor] Towards Compositional and Generative Tensor
Optimizations (GPCE'17)

• Domain: Tensor computations (quantum chemistry and
physics, big data analysis, machine learning,
computational fluid dynamics)

• Meta: Undefined

• Object: C, custom intermediate language

• Concepts: intermediate language

Copyright 2004-present Facebook. All Rights Reserved.

Thanks!

