T he Structure
of a Program Inverter

Robert Glick!

and Masahiko Kawabe?

Dagstuhl IFIP WG 2.11
January 27, 2006

1 University of Copenhagen, Denmark

2 \Waseda University, Tokyo, Japan

Inverse Programs

e Perhaps the most common example of two programs
that are inverse to each other:

text text

code
encoder decoder

e Examples: zip/unzip, uuencode/uudecode,...

Inverse Interpreter

e Inverse Interpreter nvint:

— Let p(in) = out. Given program p and output out,
compute the possible input n:

p out
|

mvint —— 1n

e A logic programming system (e.g., Prolog).

e For functional languages, the
Universal Resolving Algorithm [AbramovGliick02]

Our Approach: Program Inverter

e Program Inverter tnverter:

— Given program p, generate an inverse program p— -.

— Inverse program p—

p

|

nmverter

1

1

computes an input n
from a given output out:

out

|

p

—1

e Challenge: automatic generation of deterministic and
efficient inverse programs from injective programs.

Structure of Our Program Inverter

e Steps for program inversion
1. Translation to grammar language.
2. Local inversion.
3. Elimination of nondeterminism.

4. Translation to source language.

Source Program Inverse Program
1. Translation 4. Translation
Grammar Program Inverse Deterministic Inv.
Grammar Program Grammar Program
2. Local Inversion 3. Elimination of

Nondeterminism

Example: Increment a Binary Number

e Source Program:
inc(x) = case = of
1 —0:1
xq1.xs — case x1 of O — 1lizs

1 — O:inc(xs)

e Binary numbers are represented by improper lists
of digits in reverse order: 110 = (0 1.1)

e Goal: generate a decrement program dec.

Well-formed for Inversion

e \We require: Every defined variable is used.
Non-example:

fst(zs) = case zs of Y.ys — y

Programs that never discard values
are called well-formed for inversion.

Translation

e Translation to Grammar Language:

inc — 17 1! O! Cons!
inc — Cons? 0?7 1! Cons!
inc — Cons? 1?7 inc 0! Cons!

e Stack-based Evaluation:

(1.1)

Cons?| 1 17 me 0! 0O | Cons!

Semantics of the Grammar Language

Transition rules (Ops x Stack — Ops x Stack):
<a:ts,vs> = <ts,A|Ia]]vs>
(fits,vs) = (s Hts,vs) if f—ts €p

Nondeterministic choice!

Atomic operations (Op — Stack — Stack):
Alle?] e(vy,...,vn)ivs =

|
c
=

D
—
2l
=
c

=
S
S
S

|
o
9
c
=
\.@
S
N—’
S
=
S

]
o

Comparison: Evaluation of inc and dec

e Source program:

17? 1! 0! 0O | Cons!
1 € 1 1 (0.1)

e Inverse program:

1! 17 07? 0 | Cons?
1 € 1 1 (0.1)

11

Local Inversion

e Operation: Inverted individually.

inv[¢] = ¢?
inv[c?] = ¢!
inv[f 1 = f1

e Sequences:. Backwards reading.
IV f—=t1...ta 1=Fft=inv[t,] ... 0inv[t1]

e Program: Global inversion by local inversion.
INV] pgm [= { Inv[def 1| | def € pgm }

12

Local Inversion of inc

e Source program:
inc — 17 1! 0! Cons!
inc — Cons? 07 1! Cons!
inc — Cons? 1?7 inc 0! Cons!

e Inverse program:
dec — Cons? 0?7 17 1!
dec — Cons? 17 0! Cons!
dec — Cons? 07?7 dec 1! Cons!

13

Correctness of Local Inversion

e Inverse programs produced by local inversion
of injective programs:

—1
[p] vsin =vsout <= [p~ "I vsout = vsin

e Generally:
There is a computation of p with usj, that terminates
and yields output wvsqyt Iff there is a computation of

p~1 with wsg,t that terminates and yields output wsi,.

14

Transformation by Left-Factoring (1/2)

e Nondeterministic program:

dec — Cons? 17 0! Cons!
dec — Cons? 07 17 1!

dec — Cons? 07 dec 1! Cons!

e 1. Left-factoring (introduce new fq):

dec — | Cons?| f1 f1 — 17 0! Cons!
fi1— 07 17 1!

f1 — 0?7 dec 1! Cons!

16

Transformation by Left-Factoring (2/2)

e 2. Left-factoring (introduce new f5):

dec — Cons? f1 f1 — 17 O! Cons!
f1 —(07] f- fo— 17 1!

fo — dec 1! Cons!

e 3. Unfold function call dec:

dec — Cons? f1 f1 — 17 0! Cons!
f1 — 07 f5 fo— 17 1!

f> — Cons? f1 1! Cons!

17

Inverse Program dec

e [ranslation to the source language:
dec(xg) 2 case xg of x1:x> — f1(x1,2x2)

f1(xp, 1) = case xg of
O —case xq1 of 1 — 1

o x3 — 1:f1(x0, x3)
1l —0:xq

e dec IS @ deterministic inverse program of inc.

— e.d., inc(11) = 100 and dec(100) = 11.

18

Example: reverse (tail-recursive)

e In grammar language:

reverse — NIl! swap rev
rev — NII?

rev — Cons? swapd Cons! swap rev

e Local inversion:
reverse L — rev 1 swap Nil?
rev "t — Nil!

rev— 1 — - swap Cons? swapd Cons!

21

Analogy with Context-Free Grammars

e View programs as context-free grammar:

— Constructors ¢! and pattern matchings c¢?
correspond to terminal symbols.

— Functions correspond to nonterminal symbols.

e Program: Grammar:
dec — Cons? 07 17 1! D — acef
dec — Cons? 17 0! Cons! D — aedb
dec — Cons? 0?7 dec 1! Cons! D — acD fb

e LR(0O) parsing can be applied to the grammar to
obtain a deterministic parser.

22

Good Adyvice for Automatic Inversion

e Language for Inversion

— Each operation ¢ has one operation t—1 as its in-
verse.

— Each operation t—1 is part of the language.
— Multiple inputs give multiple outputs (co-arity).

— Value domain: postcond. become tests in program.

e Structure of Inverter

— local inversion + eliminate nondet.

e As in PE, some programs invert well, others don't.

32

Thanks for Generous Support

e Japan Science and Technology Agency (JST)

e \Waseda University, Tokyo (Y. Futamura)

36

Bibliography

S.M. Abramov and R. Gluck. Principles of Inverse Computation and the
Universal Resolving Algorithm. In The Essence of Computation: Complexity,
Analysis, Transformation (T.Mogensen, D.Schmidt, I.H.Sudborough, eds.),
LNCS 2566: 269—295. Springer-Verlag. 2002.

R. Gluck and M. Kawabe. A Program Inverter for a Functional Language
with Equality and Constructors. In Programming Languages and Systems.
Proceedings (A.Ohori, ed.), LNCS 2895: 246—264. Springer-Verlag. 2003.

R. Gluck and M. Kawabe. Derivation of deterministic inverse programs
pased on LR parsing. In Functional and Logic Programming. Proceedings
(Y.Kameyama, P.J.Stuckey, eds.). LNCS 2998: 291-306. Springer-Verlag.
2004.

M. Kawabe and R. Gluck . The Program Inverter LRinv and its Structure. In
Practical Aspects of Declarative Languages. Proceedings (M.Hermenegildo,
D.Cabeza, eds.). LNCS 3350: 219—234. Springer-Verlag. 2005.

33

