
The Structure

of a Program Inverter

Robert Glück1

and Masahiko Kawabe2

Dagstuhl IFIP WG 2.11

January 27, 2006

1 University of Copenhagen, Denmark
2 Waseda University, Tokyo, Japan

Inverse Programs

• Perhaps the most common example of two programs

that are inverse to each other:

code

text text

!

"

#

encoder decoder

• Examples: zip/unzip, uuencode/uudecode,...

1

Inverse Interpreter

• Inverse Interpreter invint:

– Let p(in) = out. Given program p and output out,

compute the possible input in:

p

!

out

!

invint " in

• A logic programming system (e.g., Prolog).

• For functional languages, the

Universal Resolving Algorithm [AbramovGlück02]

2

Our Approach: Program Inverter

• Program Inverter inverter:

– Given program p, generate an inverse program p−1.

– Inverse program p−1 computes an input in

from a given output out:

p

!

inverter "

out

!

p−1 " in

• Challenge: automatic generation of deterministic and

efficient inverse programs from injective programs.

3

Structure of Our Program Inverter

• Steps for program inversion

1. Translation to grammar language.

2. Local inversion.

3. Elimination of nondeterminism.

4. Translation to source language.

Source Program

!

1. Translation
!

"

#

$
Grammar Program "

2. Local Inversion

!

"

#

$
Inverse

Grammar Program
"

3. Elimination of
Nondeterminism

Inverse Program

#

4. Translation
!

"

#

$
Deterministic Inv.
Grammar Program

5

Example: Increment a Binary Number

• Source Program:

inc(x) ! case x of

1 → 0:1

x1:xs → case x1 of 0 → 1:xs

1 → 0:inc(xs)

• Binary numbers are represented by improper lists

of digits in reverse order: 110 ⇒ (0 1 . 1)

• Goal: generate a decrement program dec.

6

Well-formed for Inversion

• We require: Every defined variable is used.

Non-example:

fst(xs) ! case xs of y:ys → y

Programs that never discard values

are called well-formed for inversion.

7

Translation

• Translation to Grammar Language:

inc → 1? 1! 0! Cons!
inc → Cons? 0? 1! Cons!
inc → Cons? 1? inc 0! Cons!

• Stack-based Evaluation:

(1.1)
"

Cons? 1

1
"

1?

1
"

inc
*

(0.1)
"

0! 0

(0.1)
"

Cons!

(00.1)

⇑

1
"

1?

ε
"

1!

1
"

0! 0

1
"

Cons!

(0.1)

8

Semantics of the Grammar Language

Transition rules (Ops × Stack → Ops × Stack):

〈a:ts, vs〉 ⇒ 〈ts,A[[a]] vs〉
〈f :ts, vs〉 ⇒ 〈 ts′ ++ ts, vs〉 if f → ts′ ∈ p

Nondeterministic choice!

Atomic operations (Op → Stack → Stack):

A[[c?]] c(v1, . . . , vn):vs = v1: . . . :vn:vs

A[[c!]] v1: . . . :vn:vs = c(v1, . . . , vn):vs if n = |c|
A[[* +]] v:vs = *v+:vs
A[[π]] vs = π ◦ vs

9

Comparison: Evaluation of inc and dec

• Source program:

1
"

1?

ε
"

1!

1
"

0! 0

1
"

Cons!

(0.1)

• Inverse program:

1
#
1!

ε
#
1?

1
#
0? 0

1
#
Cons?

(0.1)

11

Local Inversion

• Operation: Inverted individually.

inv[[c!]] = c?

inv[[c?]] = c!

inv[[f]] = f−1

inv[[* +]] = * +
inv[[(i1, ..., in)]] = (i1, ..., in)−1

• Sequences: Backwards reading.

Inv[[f → t1 . . . tn]] = f−1 → inv[[tn]] . . . inv[[t1]]

• Program: Global inversion by local inversion.

INV[[pgm]] = { Inv[[def]] | def ∈ pgm }
12

Local Inversion of inc

• Source program:

inc → 1? 1! 0! Cons!

inc → Cons? 0? 1! Cons!

inc → Cons? 1? inc 0! Cons!

• Inverse program:

dec → Cons? 0? 1? 1!

dec → Cons? 1? 0! Cons!

dec → Cons? 0? dec 1! Cons!

13

Correctness of Local Inversion

• Inverse programs produced by local inversion

of injective programs:

[[p]] vs in = vsout ⇐⇒ [[p−1]] vsout = vs in

• Generally:

There is a computation of p with vs in that terminates

and yields output vsout iff there is a computation of

p−1 with vsout that terminates and yields output vs in.

14

Transformation by Left-Factoring (1/2)

• Nondeterministic program:

dec → Cons? 1? 0! Cons!

dec → Cons? 0? 1? 1!

dec → Cons? 0? dec 1! Cons!

• 1. Left-factoring (introduce new f1):

dec → Cons? f1 f1 → 1? 0! Cons!

f1 → 0? 1? 1!

f1 → 0? dec 1! Cons!

16

Transformation by Left-Factoring (2/2)

• 2. Left-factoring (introduce new f2):

dec → Cons? f1 f1 → 1? 0! Cons!

f1 → 0? f2 f2 → 1? 1!

f2 → dec 1! Cons!

• 3. Unfold function call dec:

dec → Cons? f1 f1 → 1? 0! Cons!

f1 → 0? f2 f2 → 1? 1!

f2 → Cons? f1 1! Cons!

17

Inverse Program dec

• Translation to the source language:

dec(x0) ! case x0 of x1:x2 → f1(x1, x2)

f1(x0, x1) ! case x0 of

0 → case x1 of 1 → 1

x2:x3 → 1:f1(x2, x3)

1 → 0:x1

• dec is a deterministic inverse program of inc.

– e.g., inc(11) = 100 and dec(100) = 11.

18

Example: reverse (tail-recursive)

• In grammar language:

reverse → Nil! swap rev

rev → Nil?

rev → Cons? swapd Cons! swap rev

• Local inversion:

reverse−1 → rev−1 swap Nil?

rev−1 → Nil!

rev−1 → rev−1 swap Cons? swapd Cons!

21

Analogy with Context-Free Grammars

• View programs as context-free grammar:

– Constructors c! and pattern matchings c?
correspond to terminal symbols.

– Functions correspond to nonterminal symbols.

• Program:

dec → Cons? 0? 1? 1!

dec → Cons? 1? 0! Cons!

dec → Cons? 0? dec 1! Cons!

Grammar:

D → a c e f

D → a e d b

D → a c D f b

• LR(0) parsing can be applied to the grammar to
obtain a deterministic parser.

22

Good Advice for Automatic Inversion

• Language for Inversion

– Each operation t has one operation t−1 as its in-

verse.

– Each operation t−1 is part of the language.

– Multiple inputs give multiple outputs (co-arity).

– Value domain: postcond. become tests in program.

• Structure of Inverter

– local inversion + eliminate nondet.

• As in PE, some programs invert well, others don’t.

32

Thanks for Generous Support

• Japan Science and Technology Agency (JST)

• Waseda University, Tokyo (Y. Futamura)

36

Bibliography

• S.M. Abramov and R. Glück. Principles of Inverse Computation and the
Universal Resolving Algorithm. In The Essence of Computation: Complexity,
Analysis, Transformation (T.Mogensen, D.Schmidt, I.H.Sudborough, eds.),
LNCS 2566: 269–295. Springer-Verlag. 2002.

• R. Glück and M. Kawabe. A Program Inverter for a Functional Language
with Equality and Constructors. In Programming Languages and Systems.
Proceedings (A.Ohori, ed.), LNCS 2895: 246–264. Springer-Verlag. 2003.

• R. Glück and M. Kawabe. Derivation of deterministic inverse programs
based on LR parsing. In Functional and Logic Programming. Proceedings
(Y.Kameyama, P.J.Stuckey, eds.). LNCS 2998: 291–306. Springer-Verlag.
2004.

• M. Kawabe and R. Glück . The Program Inverter LRinv and its Structure. In
Practical Aspects of Declarative Languages. Proceedings (M.Hermenegildo,
D.Cabeza, eds.). LNCS 3350: 219–234. Springer-Verlag. 2005.

33

