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1. Comprehensions

• ZF axiom schema of specification:

fx2 j x 2 Nat ^ x < 10 ^ x is eveng

• SETL set-formers:

fx � x : x in f0 : :9g j x mod 2 � 1g

• Eindhoven Quantifier Notation:

�x : 0 6 x < 10 ^ x is even : x2�

• Haskell (NPL, Python, . . . ) list comprehensions:

�x ^ 2 j x  �0 : :9�; even x�
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2. Relational algebra vs calculus

Consider two database tables:

customers : cid;name;address
invoices : iid; customer;amount;due

A query in relational algebra (‘point-free’, on relations):

�name;amount;address ��due<today �customers öcid�customer invoices��

The same query in relational calculus (‘point-wise’, on tuples):

SELECT name, amount, address
FROM customers, invoices
WHERE cid = customer AND due < today

The algebraic style may be convenient for formal manipulation,
but the calculus style is much more accessible for readers.
DBMSs typically translate from calculus-style input to algebra-style
intermediate representation.
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3. Comprehending queries

Trinder (1991) argued for comprehensions as a query notation:

� �c:name; c:address; i:amount�
j c  customers;

i  invoices;
c:cid �� i:customer;
i:due< today �

Very influential observation in the DBPL community.
Formed the basis of languages such as Buneman’s Kleisli, Microsoft LINQ,
Wadler’s Links, as well as querying for objects (OQL) and XML (XQuery).
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4. Comprehending monads (Wadler 1992)

The necessary structure is that of a monad �T; >>�; return�:

�>>�� :: T a ! �a ! T b�! T b �x >>� f � >>� k � x >>� ��a ! f a>>� k�
return :: a ! T a return a>>� k � k a

x >>� return � x

with additionally mzero :: T a.

Comprehensions can then be generalized to other monads:

D �e j� � return e

D �e j p  e0;Q � � e0 >>� �p !D �e j Q �
D �e j e0;Q � � guard e0 >>D �e j Q �
D �e j let d;Q � � let d inD �e j Q �

(where guard b � if b then return �� else mzero).

Hence monad comprehensions for sets, bags, maps-to-monad-zeroes, etc.
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5. The problem with joins

The comprehension yields a terrible query plan!
Constructs entire cartesian product, then discards most of it:

cp customers invoices B

filter ���c; i�! c:cid �� i:customer�B
filter ���c; i�! i:due< today� B

fmap ���c; i�! �c:name; c:address; i:amount�

(where B is reverse function application).
Better to group by customer identifier, then handle groups separately:

�indexBy cid customers� ‘merge‘ �indexBy customer invoices�B
fmap �id � filter ��i ! i:due< today�� B

fmap �fmap ��c ! �c:name; c:address��� fmap ��i ! i:amount��

(where indexBy partitions, and merge pairs on common index).
But this doesn’t correspond to anything expressible in comprehensions.
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6. Comprehensive comprehensions

Various extensions to the comprehension syntax:

• parallel (‘zip’) comprehensions (since GHC 5.0, 2001):

��x;y� j x  �1;2;3� j y  �4;5;6��

• ‘order by’ and ‘group by’ (Wadler & Peyton Jones, 2007):

� �the dept; sum salary�
j �name;dept; salary� employees

; then group by dept using groupWith

; then sortWith by sum salary

; then take 5�

(NB group by rebinds the variables bound earlier!)

Initially just for lists, but. . .
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Generalized comprehensive comprehensions

. . . generalizes nicely to other monads (Giorgidze et al, 2011):

D �e j �Q j R�; S �
�mzip �D �vQ j Q �� �D �vR j R�� >>� ��vQ ;vR�!D �e j S �

D �e j Q ; then f by b;R�
� f ��vQ ! b� �D �vQ j Q �� >>� �vQ !D �e j R�

D �e j Q ; then group by b using f ;R�
� f ��vQ ! b� �D �vQ j Q �� >>� �ys !

case �fmap vQ 1 ys; :::; fmap vQ n ys� of vQ !D �e j R�

where vQ is the tuple of variables bound by Q (and used subsequently),
and vQ i is a selector mapping vQ to its ith component.
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7. Solving the problem with (equi-)joins

Maps-to-bags form a monad-with-zero—roughly:

type Map k v � k ! v

type Table k v � Map k �Bag v�

Now define

indexBy :: Eq k ) �v ! k�! Bag v ! Table k v

indexBy f xs k � filter ��v ! f v �� k� xs

merge :: Table k v ! Table k w ! Table k �v;w�
merge f g � �k ! cp �f k� �g k�

Can use merge for parallel comprehensions:

instance MonadZip �Table k� where mzip �merge

and indexBy for grouping.
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Given input tables

customers :: Bag �CID;Name;Address�
invoices :: Bag �IID;CID;Amount;Date�

evaluate our example query as:

query :: Map Int �Name;Address;Bag Amount�
query � � �the name; the addr;amount�

j �cid;name;addr� customers

; then group by cid using indexBy

j �iid; customer;amount;due� invoices

; due< today

; then group by customer using indexBy �

Avoids expanding the whole cartesian product.
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8. Aggregation

For database queries, want to aggregate collections: count, sum, some, . . .

Problem: maps may be infinite.

Solution: restrict to finite maps.

Problem: not a monad—return a � �k ! a yields a non-finite map.

Solution? semi-monads (with bind but no return).

Problem: semi-monad comprehensions—base case uses return:

D �e j� � return e

This is surmountable. . . but we prefer:

Solution: graded (indexed, parametric) monads
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9. Graded monads

Monad �T; >>�; return� has endofunctor T : C! C, polymorphic functions

�>>�� :: T a ! �a ! T b�! T b
return :: a ! T a

such that

�x >>� f � >>� k � x >>� ��a ! f a>>� k�
return a>>� k � k a
x >>� return � x

Katsumata’s M-graded monad �T; >>�; return� for monoid �M ; �; "� has
(non-endo-)functor T : M ! �C;C� and

�>>�� :: T m a ! �a ! T n b�! T �m�n� b
return :: a ! T " a

with same laws. We use T � Table over monoid �K;�;1� of finite key types.
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10. Adjunctions, and query optimization

Optimizations depend on a body of meaning-preserving transformations,
all arising from algebraic properties of the datatypes—adjunctions:

C

R

??? D

L

~~
with b�c : C�L X ;Y � ’ D�X ;R Y � : d�e

Currying yields indexing; products yield projection and merge; coproducts
yield filters; free commutative monoids yield selection and aggregation.

Monads famously arise from adjunctions; graded monads do too, albeit in
a slightly more complicated way.

Work in progress: justifying standard query optimizations via these
correspondences.
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11. Comprehending semi-monads

Prohibit comprehensions with no qualifiers; multiple base cases instead.

D �" j p  e0� � fmap ��p ! e0� "
D �" j e0� � ::: -- not allowed
D �" j let d� � ::: -- not allowed
D �" j �Q j R�� � fmap ���vQ ;vR�! "�

�mzip �D �vQ j Q �� �D �vR j R���
D �" j Q ; then f by b� � fmap ��vQ ! "� �f ��vQ ! b� �D �vQ j Q ���
D �" j Q ; then group by b using f �
� fmap ��ys ! case �fmap vQ 1 ys; :::; fmap vQ n ys� of vQ ! "�
�f ��vQ ! b� �D �vQ j Q ���

Also, we can’t define guard if we don’t have return, so desugaring of
guards needs to change:

D �" j e0;Q � � if e0 thenD �" j Q � else mzero


