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1. Comprehensions

e ZF axiom schema of specification:

fx? jx 2 Nat ™~ x <10 ™ x is eveng

e SETL set-formers:

fx x:xinf0::9gjxmod2 1g

e Eindhoven Quantifier Notation:

X:0<Xx<10"™ X is even : x?2

e Haskell (NPL, Python, ...) list comprehensions:

x"2jx 0::9 ;even X



2. Relational algebra vs calculus

Consider two database tables:;

customers : cid; name:; address
iInvoices :1id; customer; amount; due

A guery in relational algebra (‘point-free’, on relations):

name:amount:address  due<today CUSLOMErS  ¢id customer INVOICES

The same query in relational calculus (‘point-wise’, on tuples):

SELECT name, amount, address
FROM customers, 1nvoices
WHERE cid = customer AND due < today

The algebraic style may be convenient for formal manipulation,
but the calculus style is much more accessible for readers.

DBMSs typically translate from calculus-style input to algebra-style
Intermediate representation.



3. Comprehending gueries

Trinder (1991) argued for comprehensions as a query notation:

c.name; c.address; i.:amount
jc customers;
I INnvoices;
c:.cid I:customer;
I:due < today

Very influential observation in the DBPL community.
Formed the basis of languages such as Buneman’s Kleisli, Microsoft LINQ,
Wadler’s Links, as well as querying for objects (OQL) and XML (XQuery).



4. Comprehending monads (Wadler 1992)

The necessary structure is that of a monad T;> ;return :

= ~Tal® alThb Y¥Thb x=>f > k x> alfa=> k
return::a @ Ta returna= k ka
X = return X

with additionally mzero :: T a.

Comprehensions can then be generalized to other monads:

D ej return e

D ejp eQ €= pID ejQ
D eje’Q guarde’>D ejQ
D ejletd;Q letdinD e Q

(where guard b if b then return else mzero).

Hence monad comprehensions for sets, bags, maps-to-monad-zeroes, etc.



5. The problem with joins

The comprehension yields a terrible query plan!
Constructs entire cartesian product, then discards most of it:

Cp customers invoices >
filter c;i ¥ c:cid I.customer
filter c;1 ¥ i:due <today >

fmap c;i ¥ c:name;c:address;i:amount

(where > is reverse function application).
Better to group by customer identifier, then handle groups separately:

IndexBy cid customers ‘merge‘ indexBy customer invoices >
fmap i1d filter 1 ¥ i:due <today >
fmap fmap ¢ ¥ c:name;c:address fmmap 1 ¥ i;:amount

(where indexBy partitions, and merge pairs on common index).
But this doesn’t correspond to anything expressible in comprehensions.



6. Comprehensive comprehensions

Various extensions to the comprehension syntax:

e parallel (‘zip’) comprehensions (since GHC 5.0, 2001):

X;y JX 1;2;3 jy 4;5;6

e ‘order by’ and ‘group by’ (Wadler & Peyton Jones, 2007):

the dept; sum salary
j name; dept; salary employees
, then group by dept using groupWith
; then sortWith by sum salary
, then take 5

(NB group by rebinds the variables bound earlier!)

Initially just for lists, but. ..



Generalized comprehensive comprehensions

... generalizes nicely to other monads (Giorgidze et al, 2011):
D ej QJR ;S
mzip D vQ jQ D VRJjR = VvQ;VR ¥ D ¢€jS
D ejQ;thenf byb;R
f vO'b D vVvQjJQ = vQ!D ejR
D ejQ;then group by b using f;R
f vOTb D VvQJjQ > ys 1
case fmap vQqys;:;;fmapvQ,ys ofvQ ' D ejR

where vQ is the tuple of variables bound by Q (and used subsequently),
and vQ; Is a selector mapping vQ to its ith component.



7. Solving the problem with (equi-)joins

Maps-to-bags form a monad-with-zero—roughly:

type Map k v k T v
type Table kv Map k Bagv

Now define

indexBy :Eqk ) v ¥k ¥ Bagv Y Tablekv
indexBy f xsk filter v ¢ fv k Xs

merge :Tablekv ¥ Tablekw ¥ Tablek v;w
merge f g k ¥cp fk gk

Can use merge for parallel comprehensions:
Instance MonadZip Table k where mzip merge

and indexBy for grouping.



Comprehending Monadic Queries

Given input tables

customers :: Bag CID; Name; Address
Invoices :: Bag |ID; CID; Amount; Date

evaluate our example query as:

query :: Map Int Name; Address; Bag Amount
query the name; the addr; amount
J cid; name;addr customers
; then group by cid using indexBy
J 1id; customer; amount; due Invoices
; due < today
, then group by customer using indexBy

Avoids expanding the whole cartesian product.
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8. Aggregation

For database queries, want to aggregate collections: count, sum, some, ...
Problem: maps may be infinite.

Solution: restrict to finite maps.

Problem: not a monad—return a k ¥ ayields a non-finite map.
Solution? semi-monads (with bind but no return).

Problem: semi-monad comprehensions—base case uses return:
D ej return e

This is surmountable. . . but we prefer:

Solution: graded (indexed, parametric) monads



9. Graded monads

Monad T;= ;return has endofunctor T:C ¥ C, polymorphic functions

> “Tal® alThb Y¥YThb
return::a I Ta

such that

x=f > Kk x> alfa>=> k
returna>= k ka
X = return X

Katsumata’s M-graded monad T;>= ;return for monoid M; ;" has

(non-endo-)functor T:M ¥ C;C and

> cTma?®' a¥YTnb T mnob
return::a I T"a

with same laws. We use T Table over monoid K; ;1 of finite key types.



10. Adjunctions, and guery optimization

Optimizations depend on a body of meaning-preserving transformations,
all arising from algebraic properties of the datatypes—adjunctions:

c 2?2 D withb c:CLX;Y 7D X;RY :de

Currying yields indexing; products yield projection and merge; coproducts
yield filters; free commutative monoids yield selection and aggregation.

Monads famously arise from adjunctions; graded monads do too, albeit in
a slightly more complicated way.

Work in progress: justifying standard query optimizations via these
correspondences.



11. Comprehending semi-monads

Prohibit comprehensions with no qualifiers; multiple base cases instead.

D "jp ¢ fmap p e "
D "je' 2 --not allowed
D "jletd ... --not allowed
D "] QjR fmap vQ;vR "
mzip D vQ jQ D VRJR
D "jQ;thenf byb fmap vQI"™ f vQY¥b D vQjQ
D "jQ;then group by b using f

fmap ys ¥ case fmap vQ; ys;::;;fmapvQ,ys ofvQ ¢ "
f vQIb D vQjQ

Also, we can’t define guard if we don’t have return, so desugaring of
guards needs to change:

D "je’Q ife"thenD "jQ else mzero



