
Comprehending Monadic Queries

Jeremy Gibbons

(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)

WG2.11#15, November 2015

Comprehending Monadic Queries 2

1. Comprehensions

• ZF axiom schema of specification:

fx2 j x 2 Nat ^ x < 10 ^ x is eveng

• SETL set-formers:

fx � x : x in f0 : :9g j x mod 2 � 1g

• Eindhoven Quantifier Notation:

�x : 0 6 x < 10 ^ x is even : x2�

• Haskell (NPL, Python, . . .) list comprehensions:

�x ^ 2 j x �0 : :9�; even x�

Comprehending Monadic Queries 3

2. Relational algebra vs calculus

Consider two database tables:

customers : cid;name;address
invoices : iid; customer;amount;due

A query in relational algebra (‘point-free’, on relations):

�name;amount;address ��due<today �customers öcid�customer invoices��

The same query in relational calculus (‘point-wise’, on tuples):

SELECT name, amount, address
FROM customers, invoices
WHERE cid = customer AND due < today

The algebraic style may be convenient for formal manipulation,
but the calculus style is much more accessible for readers.
DBMSs typically translate from calculus-style input to algebra-style
intermediate representation.

Comprehending Monadic Queries 4

3. Comprehending queries

Trinder (1991) argued for comprehensions as a query notation:

� �c:name; c:address; i:amount�
j c customers;

i invoices;
c:cid �� i:customer;
i:due< today �

Very influential observation in the DBPL community.
Formed the basis of languages such as Buneman’s Kleisli, Microsoft LINQ,
Wadler’s Links, as well as querying for objects (OQL) and XML (XQuery).

Comprehending Monadic Queries 5

4. Comprehending monads (Wadler 1992)

The necessary structure is that of a monad �T; >>�; return�:

�>>�� :: T a ! �a ! T b�! T b �x >>� f � >>� k � x >>� ��a ! f a>>� k�
return :: a ! T a return a>>� k � k a

x >>� return � x

with additionally mzero :: T a.

Comprehensions can then be generalized to other monads:

D �e j� � return e

D �e j p e0;Q � � e0 >>� �p !D �e j Q �
D �e j e0;Q � � guard e0 >>D �e j Q �
D �e j let d;Q � � let d inD �e j Q �

(where guard b � if b then return �� else mzero).

Hence monad comprehensions for sets, bags, maps-to-monad-zeroes, etc.

Comprehending Monadic Queries 6

5. The problem with joins

The comprehension yields a terrible query plan!
Constructs entire cartesian product, then discards most of it:

cp customers invoices B

filter ���c; i�! c:cid �� i:customer�B
filter ���c; i�! i:due< today� B

fmap ���c; i�! �c:name; c:address; i:amount�

(where B is reverse function application).
Better to group by customer identifier, then handle groups separately:

�indexBy cid customers� ‘merge‘ �indexBy customer invoices�B
fmap �id � filter ��i ! i:due< today�� B

fmap �fmap ��c ! �c:name; c:address��� fmap ��i ! i:amount��

(where indexBy partitions, and merge pairs on common index).
But this doesn’t correspond to anything expressible in comprehensions.

Comprehending Monadic Queries 7

6. Comprehensive comprehensions

Various extensions to the comprehension syntax:

• parallel (‘zip’) comprehensions (since GHC 5.0, 2001):

��x;y� j x �1;2;3� j y �4;5;6��

• ‘order by’ and ‘group by’ (Wadler & Peyton Jones, 2007):

� �the dept; sum salary�
j �name;dept; salary� employees

; then group by dept using groupWith

; then sortWith by sum salary

; then take 5�

(NB group by rebinds the variables bound earlier!)

Initially just for lists, but. . .

Comprehending Monadic Queries 8

Generalized comprehensive comprehensions

. . . generalizes nicely to other monads (Giorgidze et al, 2011):

D �e j �Q j R�; S �
�mzip �D �vQ j Q �� �D �vR j R�� >>� ��vQ ;vR�!D �e j S �

D �e j Q ; then f by b;R�
� f ��vQ ! b� �D �vQ j Q �� >>� �vQ !D �e j R�

D �e j Q ; then group by b using f ;R�
� f ��vQ ! b� �D �vQ j Q �� >>� �ys !

case �fmap vQ 1 ys; :::; fmap vQ n ys� of vQ !D �e j R�

where vQ is the tuple of variables bound by Q (and used subsequently),
and vQ i is a selector mapping vQ to its ith component.

Comprehending Monadic Queries 9

7. Solving the problem with (equi-)joins

Maps-to-bags form a monad-with-zero—roughly:

type Map k v � k ! v

type Table k v � Map k �Bag v�

Now define

indexBy :: Eq k) �v ! k�! Bag v ! Table k v

indexBy f xs k � filter ��v ! f v �� k� xs

merge :: Table k v ! Table k w ! Table k �v;w�
merge f g � �k ! cp �f k� �g k�

Can use merge for parallel comprehensions:

instance MonadZip �Table k� where mzip �merge

and indexBy for grouping.

Comprehending Monadic Queries 10

Given input tables

customers :: Bag �CID;Name;Address�
invoices :: Bag �IID;CID;Amount;Date�

evaluate our example query as:

query :: Map Int �Name;Address;Bag Amount�
query � � �the name; the addr;amount�

j �cid;name;addr� customers

; then group by cid using indexBy

j �iid; customer;amount;due� invoices

; due< today

; then group by customer using indexBy �

Avoids expanding the whole cartesian product.

Comprehending Monadic Queries 11

8. Aggregation

For database queries, want to aggregate collections: count, sum, some, . . .

Problem: maps may be infinite.

Solution: restrict to finite maps.

Problem: not a monad—return a � �k ! a yields a non-finite map.

Solution? semi-monads (with bind but no return).

Problem: semi-monad comprehensions—base case uses return:

D �e j� � return e

This is surmountable. . . but we prefer:

Solution: graded (indexed, parametric) monads

Comprehending Monadic Queries 12

9. Graded monads

Monad �T; >>�; return� has endofunctor T : C! C, polymorphic functions

�>>�� :: T a ! �a ! T b�! T b
return :: a ! T a

such that

�x >>� f � >>� k � x >>� ��a ! f a>>� k�
return a>>� k � k a
x >>� return � x

Katsumata’s M-graded monad �T; >>�; return� for monoid �M ; �; "� has
(non-endo-)functor T : M ! �C;C� and

�>>�� :: T m a ! �a ! T n b�! T �m�n� b
return :: a ! T " a

with same laws. We use T � Table over monoid �K;�;1� of finite key types.

Comprehending Monadic Queries 13

10. Adjunctions, and query optimization

Optimizations depend on a body of meaning-preserving transformations,
all arising from algebraic properties of the datatypes—adjunctions:

C

R

??? D

L

~~
with b�c : C�L X ;Y � ’ D�X ;R Y � : d�e

Currying yields indexing; products yield projection and merge; coproducts
yield filters; free commutative monoids yield selection and aggregation.

Monads famously arise from adjunctions; graded monads do too, albeit in
a slightly more complicated way.

Work in progress: justifying standard query optimizations via these
correspondences.

Comprehending Monadic Queries 14

11. Comprehending semi-monads

Prohibit comprehensions with no qualifiers; multiple base cases instead.

D �" j p e0� � fmap ��p ! e0� "
D �" j e0� � ::: -- not allowed
D �" j let d� � ::: -- not allowed
D �" j �Q j R�� � fmap ���vQ ;vR�! "�

�mzip �D �vQ j Q �� �D �vR j R���
D �" j Q ; then f by b� � fmap ��vQ ! "� �f ��vQ ! b� �D �vQ j Q ���
D �" j Q ; then group by b using f �
� fmap ��ys ! case �fmap vQ 1 ys; :::; fmap vQ n ys� of vQ ! "�
�f ��vQ ! b� �D �vQ j Q ���

Also, we can’t define guard if we don’t have return, so desugaring of
guards needs to change:

D �" j e0;Q � � if e0 thenD �" j Q � else mzero

